Mechanisms of optical losses in Bi:SiO2 glass fibers (original) (raw)
Related papers
Mechanisms of optical losses in Bi:SiO2 glass fibers
Optics Express
The mechanisms of optical losses in bismuth-doped silica glass (Bi:SiO2) and fibers were studied. It was found that in the fibers of this composition the up-conversion processes occur even at bismuth concentrations lower than 0.02 at.%. Bi:SiO2 core holey fiber drawn under oxidizing conditions was investigated. The absorption spectrum of this fiber has no bands of the bismuth infrared active center. Annealing of this fiber under reducing conditions leads to the formation of the IR absorption bands of the bismuth active center (BAC) and to the simultaneous growth of background losses. Under the realized annealing conditions (argon atmosphere, Tmax = 1100°C, duration 30 min) the BAC concentration reaches its maximum and begins to decrease in the process of excessive Bi reduction, while the background losses only increase. It was shown that the cause of these background losses is the absorption of light by nanoparticles of metallic bismuth formed in bismuth-doped glasses as a result of...
Optical properties of bismuth-doped silica fibres in the temperature range 300—1500 K
2012
The visible and near-IR absorption and luminescence bands of bismuth-doped silica and germanosilicate fibres have been measured for the first time as a function of temperature. The temperature-dependent IR luminescence lifetime of a bismuth-related active centre associated with silicon in the germanosilicate fibre has been determined. The Bi 3+ profile across the silica fibre preform is shown to differ markedly from the distribution of IR-emitting bismuth centres associated with silicon. The present results strongly suggest that the IR-emitting bismuth centre comprises a lowvalence bismuth ion and an oxygen-deficient glass network defect. Translated by O.M. Tsarev
Influence of electron irradiation on optical properties of Bismuth doped silica fibers
Optics express, 2011
We report a study of the attenuation spectra transformations for a series of Bismuth (Bi) doped silica fibers with various contents of emission-active Bi centers, which arise as the result of irradiation by a beam of high-energy electrons. The experimental data reveal a substantial decrease of concentration of the Bi centers, associated with the presence of Germanium in silica glass, at increasing the irradiation dose (the resonant-absorption bleaching effect in germano-silicate fiber). In contrast, the spectral changes that appear in Bi doped alumino-silicate fiber have through irradiation a completely different character, viz., weak growth of the resonant-absorption peaks ascribed to the Bi centers, associated with the presence of Aluminum in silica glass. These results demonstrating high susceptibility of Bi centers to electron irradiation while opposite routes of the irradiation-induced spectral changes in Bi doped germanate and aluminate fibers seem to be of worth notice for un...
Nonsaturable absorption in alumino-silicate bismuth-doped fibers
2011
Abstract We report an experimental and theoretical investigation of fluorescence decay and transmission coefficient at∼ 1 μm pumping for a series of bismuth (Bi) doped alumino-silicate fibers with different concentrations of Bi centers. By modeling the experimental data, we show that the excited-state absorption (ESA) and up-conversion (UC) processes are responsible for a growth of nonsaturable absorption and deviation from exponential the fluorescence decay in the fibers with an increase in Bi centers content.
Optical spectroscopy of bismuth-doped pure silica fiber preform
Optics Letters, 2010
We report on the optical spectroscopy of monolithic fiber preform prepared from nanoporous bismuth-doped silica glass. The experiments reveal the existence of at least two different types of active centers and clearly demonstrate that the presence in the glass matrix of other dopant is not necessary to obtain the near-IR photoluminescence connected to Bismuth.
Thermally-stimulated emission analysis of bismuth-doped silica fibers
Optical Materials Express, 2014
The study of Bismuth (Bi)-doped silica fibers has been performed by using thermally stimulated luminescence. The thermoluminescence peaks have been spectrally resolved in order to observe the effect of codopants on Bi luminescence. A new peak around 625K was observed for the first time in Bi-doped Al-Ge-silicate fibers. This peak is believed to be due to Bi-active centers, and was only observed in Bi-doped samples co-doped with both Al and Ge.
Bismuth-doped-glass optical fibers—a new active medium for lasers and amplifiers
2006
Optical fibers with bismuth-doped silicate and germanate glass cores were fabricated by the modified chemical vapor deposition technique (solution and vapor-phase Bi incorporation). The fibers revealed an efficient luminescence with a maximum in the 1050-1200 nm spectral range, FWHM up to 200 nm, and a lifetime of the order of 1 ms.
Near-infrared luminescence of bismuth in fluorine-doped-core silica fibres
Optics express, 2015
Photoluminescence spectra and decay kinetics of bismuth inclusions in silica optical fibres containing fluorine additive in the core glass are studied in the vicinity of a wavelength of 1420 nm at temperatures of 80-900 K under a continuous wave (CW) and a pulsed diode laser pump at a wavelength of 808 nm. At high fluorine concentration and low temperatures, luminescence decay kinetics becomes essentially bi-exponential, typical lifetimes being 720 and 1200 µs. Hydrogen and deuterium loading at pressures of up to 125 bar leads to a decrease of the steady-state luminescence intensity and lifetime. We attribute this to the appearance of an energy transfer bridge from bismuth clusters to vibrational degrees of freedom of diatomic molecules. It is found that in the presence of H<sub>2</sub> or D<sub>2</sub> molecules experiencing random walking in silica, luminescence decay kinetics stop following a single exponential function even in fluorine-free silica-core fi...
Optical gain and laser generation in bismuth-doped silica fibers free of other dopants
Optics Letters, 2011
Luminescence emission and excitation spectra of bismuth-doped silica optical fibers free of other dopants have been obtained to construct an emission-excitation map in a wide wavelength range of 400-1600 nm. The main low-lying energy levels of the bismuth active centers in such fibers have been determined. For the first time (to our knowledge), optical gain and lasing have been obtained in such fibers. A gain of 8 dB has been achieved with a pump power of 340 mW, and a cw fiber laser emitting at 1460 nm with an output power of 40 mW and an efficiency of ≈3% has been created.