Macrophages Control the Retention and Trafficking of B Lymphocytes in the Splenic Marginal Zone (original) (raw)
Related papers
Journal of immunology (Baltimore, Md. : 1950), 2016
Marginal zone macrophages (MZM) are strategically located in the spleen, lining the marginal sinus where they sense inflammation and capture Ag from the circulation. One of the receptors expressed by MZM is scavenger receptor macrophage receptor with collagenous structure (MARCO), which has affinity for modified self-antigens. In this article, we show that engagement of MARCO on murine macrophages induces extracellular ATP and loss of CD21 and CD62L on marginal zone B cells. Engagement of MARCO also leads to reduction of Ag transport by marginal zone B cells and affects the subsequent immune response. This study highlights a novel function for MZM in regulating Ag transport and activation, and we suggest that MARCO-dependent ATP release regulates this through shedding of CD21 and CD62L. Because systemic lupus erythematosus patients were shown to acquire autoantibodies against MARCO, this highlights a mechanism that could affect a patient's ability to combat infections.
European Journal of Immunology, 2007
The role secretory IgM has in protecting splenic tissue from LPS-induced damage was assessed in mice incapable of secreting IgM but able to express surface IgM and IgD. Within seconds after LPS challenge, 99% of the 131 I-labeled LPS was found in the liver and the spleen of both sIgM-deficient and wild-type mice. In the spleen FITC-labeled LPS was found on the surface of 2F8 + scavenger receptor macrophages localized in the outer marginal zone, while none of the labeled LPS could be detected on marginal zone ER-TR9 + and MOMA-1 + macrophages. An additional population of macrophages, MOMA-2 + , were capable of producing C3 locally in the T and B cell zone after LPS challenge. Local C3 production was regulated, as no C3 was found in splenic tissue of unchallenged mice. Interestingly, in the absence of circulating and locally produced secretory IgM, MOMA-2 + macrophages of the T and B cell zone failed to establish an additional ring of C3-producing macrophages in the outer B cell zone close to the marginal zone upon LPS challenge. The consequence was a massive destruction of the microarchitecture of the spleen where marginal zones disorganized, lymphoid follicles and T cell zones disrupted and follicular DC (FDC) networks disappeared.
Follicular B Cell Trafficking within the Spleen Actively Restricts Humoral Immune Responses
Immunity, 2010
Follicular (FO) and marginal zone (MZ) B cells are maintained in distinct locations within the spleen but the genetic basis for this separation is still enigmatic. We now report that B cell sequestration requires lineage-specific regulation of migratory receptors by the transcription factor, Klf2. Moreover, using gene-targeted mice we show that altered splenic B cell migration confers a significant in vivo gain-of-function phenotype to FO B cells, including the ability to quickly respond to MZ-associated antigens and pathogens in a T cell-dependent manner. This work demonstrates that in wild-type animals, naïve FO B cells are actively removed from the MZ, thus restricting their capacity to respond to blood-borne pathogens.
Journal of Histochemistry & Cytochemistry, 2014
The marginal zone (MZ) region of the spleen plays an important role in leukocyte traffic and the removal of blood-borne pathogens by resident macrophages. Macrophage receptor with a collagenous structure (MARCO), expressed by MZ macrophages, recognizes several microbial ligands and is also involved in the retention of MZ B cells. Here, we report that MARCO is also associated with follicular dendritic cells (FDCs) in the spleen. In its FDC-associated form MARCO is arranged in 0.3-0.5-μm diameter granular-fibrillar structures with an appearance similar to the white pulp conduit system formed by fibroblastic reticular cells (FRCs), but with different compartment preference. The follicular display of MARCO resists irradiation and requires the presence of both MZ macrophages and differentiated FDCs. The follicular delivery of MARCO is independent from the shuffling of marginal zone B cells, and it persists after clodronate liposome-mediated depletion of MZ macrophages. Our findings thus indicate that MARCO is distributed to both MZ and follicles within the spleen into conduit-like structures, where FDC-bound MARCO may mediate communication between the stromal microenvironments of MZ and follicles.
Frontiers in Immunology, 2015
Splenic transitional B-cells (T1 and T2) are selected to avoid self-reactivity and to safeguard against autoimmunity, then differentiate into mature follicular (FO-I and FO-II) and marginal zone (MZ) subsets. Transcriptomic analysis by RNA-seq of the five B-cell subsets revealed T1 cell signature genes included RAG suggesting a potential for receptor revision. T1 to T2 B-cell differentiation was marked by a switch from Myb to Myc, increased expression of the PI3K adapter DAP10 and MHC class II. FO-II may be an intermediate in FO-I differentiation and may also become MZ B-cells as suggested by principle component analysis. MZ B-cells possessed the most distinct transcriptome including down-regulation of CD45 phosphatase-associated protein (CD45-AP/PTPRC-AP), as well as upregulation of IL-9R and innate molecules TLR3, TLR7, and bactericidal Perforin-2 (MPEG1). Among the endosomal TLRs, stimulation viaTLR3 further enhanced Perforin-2 expression exclusively in MZ B-cells. Using gene-deleted and overexpressing transgenic mice we show that IL-9/IL-9R interaction resulted in rapid activation of STAT1, 3, and 5, primarily in MZ B-cells. Importantly, CD45-AP mutant mice had reduced transitional and increased mature MZ and FO B-cells, suggesting that it prevents premature entry of transitional B-cells to the mature B-cell pool or their survival and proliferation. Together, these findings suggest, developmental plasticity among splenic B-cell subsets, potential for receptor revision in peripheral tolerance whereas enhanced metabolism coincides with T2 to mature B-cell differentiation. Further, unique core transcriptional signatures in MZ B-cells may control their innate features. Keywords: transcriptome by RNA-seq technique, splenic transitional B-cells, follicular 1 and 2 B-cells, marginal zone B-cells, DAP10 PI3K pathway, IL-9/IL-9R, Myb Myc, Toll-like receptors 3 and 7
Marginal zone B cells regulate antigen capture by marginal zone macrophages
Journal of immunology (Baltimore, Md. : 1950), 2011
The marginal zone (MZ) of the mouse spleen contains macrophages that express receptors that trap pathogens, including the scavenger receptor macrophage receptor with a collagenous structure and the C-type lectin specific intracellular adhesion molecule-grabbing nonintegrin receptor 1 (SIGN-R1). We previously reported that expression of SIGN-R1 was decreased in CD19-deficient mice. In this study, we demonstrate that SIGN-R1 is expressed on a subset of macrophage receptor with a collagenous structure (MARCO)(+) macrophages. This subset is diminished when MZ B cells are absent due to either genetic developmental defects or following transient migration of B cells out of the MZ. When B cells return to the MZ, there is a delay in recovery of SIGN-R1-expressing macrophages. During this period, capture of Ficoll, which for the macrophages requires SIGN-R1, remains defective not only by the macrophages, but also by the B cells. Thus, MZ B cells regulate expression of molecules on macrophage...
Although the Src homology 2 domain-containing 5 Ј inositol phosphatase (SHIP) is a wellknown mediator of inhibitory signals after B cell antigen receptor (BCR) coaggregation with the low affinity Fc receptor, it is not known whether SHIP functions to inhibit signals after stimulation through the BCR alone. Here, we show using gene-ablated mice that SHIP is a crucial regulator of BCR-mediated signaling, B cell activation, and B cell development. We demonstrate a critical role for SHIP in termination of phosphatidylinositol 3,4,5-triphosphate (PI[3,4,5]P 3 ) signals that follow BCR aggregation. Consistent with enhanced PI(3,4,5)P 3 signaling, we find that splenic B cells from SHIP-deficient mice display enhanced sensitivity to BCR-mediated induction of the activation markers CD86 and CD69. We further demonstrate that SHIP regulates the rate of B cell development in the bone marrow and spleen, as B cell precursors from SHIP-deficient mice progress more rapidly through the immature and transitional developmental stages. Finally, we observe that SHIP-deficient B cells have increased resistance to BCR-mediated cell death. These results demonstrate a central role for SHIP in regulation of BCR signaling and B cell biology, from signal driven development in the bone marrow and spleen, to activation and death in the periphery. 1 Abbreviations used in this paper: 7AAD, 7-amino-actinomycin D; BCR, B cell antigen receptor; Btk, Bruton's tyrosine kinase; [Ca 2 ϩ ], intracellular free calcium; HSA, heat-stable antigen; IP 3 , inositol 1,4,5-triphosphate; MAP, mitogen-activated protein; mIg, membrane-bound Ig; NF, nuclear factor; PI3-K, phosphatidylinositol 3-kinase; PI(3,4)P 2 , phosphatidylinositol 3,4-biphosphate; PI(3,4,5)P 3 , phosphatidylinositol 3,4,5-triphosphate; PLC, phospholipase C; SHIP, Src homology 2 domain-containing 5 Ј inositol phosphatase; sIg, surface Ig.