FoxA2, Nkx2.2, and PDX-1 Regulate Islet  -Cell-Specific mafA Expression through Conserved Sequences Located between Base Pairs -8118 and -7750 Upstream from the Transcription Start Site (original) (raw)

Abstract

The MafA transcription factor is both critical to islet ␤-cell function and has a unique pancreatic cell-typespecific expression pattern. To localize the potential transcriptional regulatory region(s) involved in directing expression to the ␤ cell, areas of identity within the 5 flanking region of the mouse, human, and rat mafA genes were found between nucleotides ؊9389 and ؊9194, ؊8426 and ؊8293, ؊8118 and ؊7750, ؊6622 and ؊6441, ؊6217 and ؊6031, and ؊250 and ؉56 relative to the transcription start site. The identity between species was greater than 75%, with the highest found between bp ؊8118 and ؊7750 (ϳ94%, termed region 3). Region 3 was the only upstream mammalian conserved region found in chicken mafA (88% identity). In addition, region 3 uniquely displayed ␤-cell-specific activity in cell-line-based reporter assays. Important regulators of ␤-cell formation and function, PDX-1, FoxA2, and Nkx2.2, were shown to specifically bind to region 3 in vivo using the chromatin immunoprecipitation assay. Mutational and functional analyses demonstrated that FoxA2 (bp ؊7943 to ؊7910), Nkx2.2 (bp ؊7771 to ؊7746), and PDX-1 (bp ؊8087 to ؊8063) mediated region 3 activation. Consistent with a role in transcription, small interfering RNA-mediated knockdown of PDX-1 led to decreased mafA mRNA production in INS-1-derived ␤-cell lines (832/13 and 832/3), while MafA expression was undetected in the pancreatic epithelium of Nkx2.2 null animals. These results suggest that ␤-cell-type-specific mafA transcription is principally controlled by region 3-acting transcription factors that are essential in the formation of functional ␤ cells.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (53)

  1. Ahlgren, U., J. Jonsson, L. Jonsson, K. Simu, and H. Edlund. 1998. beta- cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the beta-cell phenotype and maturity onset diabetes. Genes Dev. 12:1763-1768.
  2. Artner, I., J. Le Lay, Y. Hang, L. Elghazi, J. C. Schisler, E. Henderson, B. Sosa-Pineda, and R. Stein. 2006. MafB: an activator of the glucagon gene expressed in developing islet {alpha}-and {beta}-cells. Diabetes 55:297-304.
  3. Ashery-Padan, R., X. Zhou, T. Marquardt, P. Herrera, L. Toube, A. Berry, and P. Gruss. 2004. Conditional inactivation of Pax6 in the pancreas causes early onset of diabetes. Dev. Biol. 269:479-488.
  4. Bain, J. R., J. C. Schisler, K. Takeuchi, C. B. Newgard, and T. C. Becker. 2004. An adenovirus vector for efficient RNA interference-mediated sup- pression of target genes in insulinoma cells and pancreatic islets of langer- hans. Diabetes 53:2190-2194.
  5. Boj, S. F., M. Parrizas, M. A. Maestro, and J. Ferrer. 2001. A transcription factor regulatory circuit in differentiated pancreatic cells. Proc. Natl. Acad. Sci. USA 98:14481-14486.
  6. Ferrer, J. 2002. A genetic switch in pancreatic beta-cells: implications for differentiation and haploinsufficiency. Diabetes 51:2355-2362.
  7. Gerrish, K., M. A. Cissell, and R. Stein. 2001. The role of hepatic nuclear factor 1 alpha and PDX-1 in transcriptional regulation of the pdx-1 gene. J. Biol. Chem. 276:47775-47784.
  8. Gerrish, K., M. Gannon, D. Shih, E. Henderson, M. Stoffel, C. V. Wright, and R. Stein. 2000. Pancreatic beta cell-specific transcription of the pdx-1 gene. The role of conserved upstream control regions and their hepatic nuclear factor 3beta sites. J. Biol. Chem. 275:3485-3492.
  9. Gerrish, K., J. C. Van Velkinburgh, and R. Stein. 2004. Conserved transcrip- tional regulatory domains of the pdx-1 gene. Mol. Endocrinol. 18:533-548.
  10. FIG. 8. MafA is not present in Nkx2.2 Ϫ/Ϫ pancreata. Sections of E18.5 wild-type and Nkx2.2 mutant mice were stained with anti-MafA (green) and anti-ghrelin (red). MafA was not detected in the mutant nor in wild-type ghrelin ϩ cells. Nuclei were stained blue.
  11. Gumucio, D. L., K. Wiebauer, R. M. Caldwell, L. C. Samuelson, and M. H. Meisler. 1988. Concerted evolution of human amylase genes. Mol. Cell. Biol. 8:1197-1205.
  12. Heinemeyer, T., X. Chen, H. Karas, A. E. Kel, O. V. Kel, I. Liebich, T. Meinhardt, I. Reuter, F. Schacherer, and E. Wingender. 1999. Expanding the TRANSFAC database towards an expert system of regulatory molecular mechanisms. Nucleic Acids Res. 27:318-322.
  13. Hohmeier, H. E., H. Mulder, G. Chen, R. Henkel-Rieger, M. Prentki, and C. B. Newgard. 2000. Isolation of INS-1-derived cell lines with robust ATP- sensitive Kϩ channel-dependent and -independent glucose-stimulated insu- lin secretion. Diabetes 49:424-430.
  14. Jacoby, D. B., N. D. Zilz, and H. C. Towle. 1989. Sequences within the 5Ј-flanking region of the S14 gene confer responsiveness to glucose in pri- mary hepatocytes. J. Biol. Chem. 264:17623-17626.
  15. Jensen, J. 2004. Gene regulatory factors in pancreatic development. Dev. Dyn. 229:176-200.
  16. Jonsson, J., L. Carlsson, T. Edlund, and H. Edlund. 1994. Insulin-promoter- factor 1 is required for pancreas development in mice. Nature 371:606-609.
  17. Kajihara, M., H. Sone, M. Amemiya, Y. Katoh, M. Isogai, H. Shimano, N. Yamada, and S. Takahashi. 2003. Mouse MafA, homologue of zebrafish somite Maf 1, contributes to the specific transcriptional activity through the insulin promoter. Biochem. Biophys. Res. Commun. 312:831-842.
  18. Kataoka, K., S. I. Han, S. Shioda, M. Hirai, M. Nishizawa, and H. Handa. 2002. MafA is a glucose-regulated and pancreatic beta-cell-specific transcrip- tional activator for the insulin gene. J. Biol. Chem. 277:49903-49910.
  19. Kitamura, Y. I., T. Kitamura, J. P. Kruse, J. C. Raum, R. Stein, W. Gu, and D. Accili. 2005. FoxO1 protects against pancreatic beta cell failure through NeuroD and MafA induction. Cell Metab. 2:153-163.
  20. Kleinjan, D. A., A. Seawright, A. J. Childs, and V. van Heyningen. 2004. Conserved elements in Pax6 intron 7 involved in (auto)regulation and alter- native transcription. Dev. Biol. 265:462-477.
  21. Lecoin, L., K. Sii-Felice, C. Pouponnot, A. Eychene, and M. P. Felder- Schmittbuhl. 2004. Comparison of maf gene expression patterns during chick embryo development. Gene Expr. Patterns 4:35-46.
  22. Lee, E. C., D. Yu, J. Martinez de Velasco, L. Tessarollo, D. A. Swing, D. L. Court, N. A. Jenkins, and N. G. Copeland. 2001. A highly efficient Esche- richia coli-based chromosome engineering system adapted for recombino- genic targeting and subcloning of BAC DNA. Genomics 73:56-65.
  23. Le Lay, J., T. A. Matsuoka, E. Henderson, and R. Stein. 2004. Identification of a novel PDX-1 binding site in the human insulin gene enhancer. J. Biol. Chem. 279:22228-22235.
  24. Malecki, M. T., U. S. Jhala, A. Antonellis, L. Fields, A. Doria, T. Orban, M. Saad, J. H. Warram, M. Montminy, and A. S. Krolewski. 1999. Mutations in NEUROD1 are associated with the development of type 2 diabetes mellitus. Nat. Genet. 23:323-328.
  25. Matsuoka, T. A., I. Artner, E. Henderson, A. Means, M. Sander, and R. Stein. 2004. The MafA transcription factor appears to be responsible for tissue-specific expression of insulin. Proc. Natl. Acad. Sci. USA 101:2930- 2933.
  26. Matsuoka, T. A., L. Zhao, I. Artner, H. W. Jarrett, D. Friedman, A. Means, and R. Stein. 2003. Members of the large Maf transcription family regulate insulin gene transcription in islet beta cells. Mol. Cell. Biol. 23:6049-6062.
  27. Mayor, C., M. Brudno, J. R. Schwartz, A. Poliakov, E. M. Rubin, K. A. Frazer, L. S. Pachter, and I. Dubchak. 2000. VISTA: visualizing global DNA sequence alignments of arbitrary length. Bioinformatics 16:1046-1047.
  28. Naya, F. J., H. P. Huang, Y. Qiu, H. Mutoh, F. J. DeMayo, A. B. Leiter, and M. J. Tsai. 1997. Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient mice. Genes Dev. 11:2323-2334.
  29. Naya, F. J., C. M. Stellrecht, and M. J. Tsai. 1995. Tissue-specific regulation of the insulin gene by a novel basic helix-loop-helix transcription factor. Genes Dev. 9:1009-1019.
  30. Nordeen, S. K., P. P. Green III, and D. M. Fowlkes. 1987. A rapid, sensitive, and inexpensive assay for chloramphenicol acetyltransferase. DNA 6:173- 178.
  31. Odom, D. T., N. Zizlsperger, D. B. Gordon, G. W. Bell, N. J. Rinaldi, H. L. Murray, T. L. Volkert, J. Schreiber, P. A. Rolfe, D. K. Gifford, E. Fraenkel, G. I. Bell, and R. A. Young. 2004. Control of pancreas and liver gene expression by HNF transcription factors. Science 303:1378-1381.
  32. Offield, M. F., T. L. Jetton, P. A. Labosky, M. Ray, R. W. Stein, M. A. Magnuson, B. L. Hogan, and C. V. Wright. 1996. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Develop- ment 122:983-995.
  33. Ohlsson, H., K. Karlsson, and T. Edlund. 1993. IPF1, a homeodomain- containing transactivator of the insulin gene. EMBO J. 12:4251-4259.
  34. Ohneda, K., H. Ee, and M. German. 2000. Regulation of insulin gene tran- scription. Semin. Cell Dev. Biol. 11:227-233.
  35. Olbrot, M., J. Rud, L. G. Moss, and A. Sharma. 2002. Identification of beta-cell-specific insulin gene transcription factor RIPE3b1 as mammalian MafA. Proc. Natl. Acad. Sci. USA 99:6737-6742.
  36. Oster, A., J. Jensen, P. Serup, P. Galante, O. D. Madsen, and L. I. Larsson. 1998. Rat endocrine pancreatic development in relation to two homeobox gene products (Pdx-1 and Nkx 6.1). J. Histochem. Cytochem. 46:707-715.
  37. Pang, K., C. Mukonoweshuro, and G. G. Wong. 1994. Beta cells arise from glucose transporter type 2 (Glut2)-expressing epithelial cells of the develop- ing rat pancreas. Proc. Natl. Acad. Sci. USA 91:9559-9563.
  38. Peshavaria, M., L. Gamer, E. Henderson, G. Teitelman, C. V. Wright, and R. Stein. 1994. XIHbox 8, an endoderm-specific Xenopus homeodomain pro- tein, is closely related to a mammalian insulin gene transcription factor. Mol. Endocrinol. 8:806-816.
  39. Petersen, H. V., P. Serup, J. Leonard, B. K. Michelsen, and O. D. Madsen. 1994. Transcriptional regulation of the human insulin gene is dependent on the homeodomain protein STF1/IPF1 acting through the CT boxes. Proc. Natl. Acad. Sci. USA 91:10465-10469.
  40. Prado, C. L., A. E. Pugh-Bernard, L. Elghazi, B. Sosa-Pineda, and L. Sussel. 2004. Ghrelin cells replace insulin-producing beta cells in two mouse models of pancreas development. Proc. Natl. Acad. Sci. USA 101:2924-2929.
  41. Samaras, S. E., M. A. Cissell, K. Gerrish, C. V. Wright, M. Gannon, and R. Stein. 2002. Conserved sequences in a tissue-specific regulatory region of the pdx-1 gene mediate transcription in pancreatic beta cells: role for hepatocyte nuclear factor 3 beta and Pax6. Mol. Cell. Biol. 22:4702-4713.
  42. Samaras, S. E., L. Zhao, A. Means, E. Henderson, T. A. Matsuoka, and R. Stein. 2003. The islet beta cell-enriched RIPE3b1/Maf transcription factor regulates pdx-1 expression. J. Biol. Chem. 278:12263-12270.
  43. Sander, M., A. Neubuser, J. Kalamaras, H. C. Ee, G. R. Martin, and M. S. German. 1997. Genetic analysis reveals that PAX6 is required for normal transcription of pancreatic hormone genes and islet development. Genes Dev. 11:1662-1673.
  44. Schisler, J. C., P. B. Jensen, D. G. Taylor, T. C. Becker, F. K. Knop, S. Takekawa, M. German, G. C. Weir, D. Lu, R. G. Mirmira, and C. B. Newgard. 2005. The Nkx6.1 homeodomain transcription factor suppresses glucagon expression and regulates glucose-stimulated insulin secretion in islet beta cells. Proc. Natl. Acad. Sci. USA 102:7297-7302.
  45. Schreiber, E., P. Matthias, M. M. Muller, and W. Schaffner. 1989. Rapid detection of octamer binding proteins with 'mini-extracts', prepared from a small number of cells. Nucleic Acids Res. 17:6419.
  46. Stoffers, D. A., J. Ferrer, W. L. Clarke, and J. F. Habener. 1997. Early-onset type-II diabetes mellitus (MODY4) linked to IPF1. Nat. Genet. 17:138-139.
  47. St-Onge, L., B. Sosa-Pineda, K. Chowdhury, A. Mansouri, and P. Gruss. 1997. Pax6 is required for differentiation of glucagon-producing alpha-cells in mouse pancreas. Nature 387:406-409.
  48. Sussel, L., J. Kalamaras, D. J. Hartigan-O'Connor, J. J. Meneses, R. A. Pedersen, J. L. Rubenstein, and M. S. German. 1998. Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic beta cells. Development 125:2213-2221.
  49. Van Velkinburgh, J. C., S. E. Samaras, K. Gerrish, I. Artner, and R. Stein. 2005. Interactions between areas I and II direct pdx-1 expression specifically to islet cell types of the mature and developing pancreas. J. Biol. Chem. 280:38438-38444.
  50. Wilson, M. E., J. A. Kalamaras, and M. S. German. 2002. Expression pattern of IAPP and prohormone convertase 1/3 reveals a distinctive set of endo- crine cells in the embryonic pancreas. Mech. Dev. 115:171-176.
  51. Yasuda, T., Y. Kajimoto, Y. Fujitani, H. Watada, S. Yamamoto, T. Watarai, Y. Umayahara, M. Matsuhisa, S. Gorogawa, Y. Kuwayama, Y. Tano, Y. Yamasaki, and M. Hori. 2002. PAX6 mutation as a genetic factor common to aniridia and glucose intolerance. Diabetes 51:224-230.
  52. Zhang, C., T. Moriguchi, M. Kajihara, R. Esaki, A. Harada, H. Shimohata, H. Oishi, M. Hamada, N. Morito, K. Hasegawa, T. Kudo, J. D. Engel, M. Yamamoto, and S. Takahashi. 2005. MafA is a key regulator of glucose- stimulated insulin secretion. Mol. Cell. Biol. 25:4969-4976.
  53. VOL. 26, 2006 ␤-CELL-SPECIFIC EXPRESSION OF THE MafA GENE 5743