A Gauge Theory of Quantum Mechanics (original) (raw)

Abstract

An Abelian gerbe is constructed over classical phase space. The 2-cocycles defining the gerbe are given by Feynman path integrals whose integrands contain the exponential of the Poincaré-Cartan form. The U(1) gauge group on the gerbe has a natural interpretation as the invariance group of the Schroedinger equation on phase space.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (11)

  1. E. Wigner, Phys. Rev. 40 (1932) 749.
  2. M. de Gosson, The Principles of Newtonian and Quantum Mechanics, Imperial College Press, London (2001); Symplectic Geometry and Quantum Mechanics, Birkhäuser, Basel (2006).
  3. C. Zachos, D. Fairlie and T. Curtright (eds.), Quantum Mechanics in Phase Space, World Scientific Series in 20th Century Physics 34, World Scientific, Singapore (2006).
  4. M. de Gosson, J. Phys. A: Math. Gen. 38 (2005) L325.
  5. M. de Gosson, J. Phys. A: Math. Gen. 38 (2005) 9263.
  6. J. Brylinski, Loop Spaces, Characteristic Classes and Geometric Quantization, Progress in Mathematics 107, Birkhäuser, Boston (1993).
  7. J.M. Isidro, hep-th/0510075, hep-th/0512241.
  8. L. Mangiarotti and G. Sardanashvily, Connections in Classical and Quantum Field Theory, World Scientific, Singapore (2000).
  9. L. Landau and E. Lifshitz, Quantum Mechanics, vol. 3 of Course of Theoretical Physics, Butterworth-Heinemann, Oxford (2000).
  10. M. de Gosson and J.M. Isidro, in preparation.
  11. G. Bertoldi, A. Faraggi and M. Matone, Class. Quant. Grav. 17 (2000) 3965.