A Mathematical Framework for Analysis of Complex Cyber-Physical Power Systems (original) (raw)

Developing technology and systems for future power systems requires an evolutionary approach where new "smart" grid technologies can be seamlessly integrated with the existing infrastructure and the ongoing overlay of new sensing and communication systems. As the diversity of these new technologies increases, the robust and secure operation of the grid will become dependent upon a detailed understanding of both physical and cyber components as well as their interactions. This paper focuses on the development of a mathematical framework and computational methodology that can be used to evaluate the stability and operational security of a complex cyber-physical power system in the context of stochastic hybrid dynamical systems, and proposes an approach based on embedding and symbolic dynamics that can be used to analyze complex system behaviors by encoding the system dynamics into symbol strings.