Loop Quantum Cosmology: Effective theories and oscillating universes (original) (raw)

Oscillatory universes in loop quantum cosmology and initial conditions for inflation

Physical Review D, 2004

Positively-curved, oscillatory universes are studied within the context of Loop Quantum Cosmology subject to a consistent semi-classical treatment. The semi-classical effects are reformulated in terms of an effective phantom fluid with a variable equation of state. In cosmologies sourced by a massless scalar field, these effects lead to a universe that undergoes ever-repeating cycles of expansion and contraction. The presence of a self-interaction potential for the field breaks the symmetry of the cycles and can enable the oscillations to establish the initial conditions for successful slow-roll inflation, even when the field is initially at the minimum of its potential with a small kinetic energy. The displacement of the field from its minimum is enhanced for lower and more natural values of the parameter that sets the effective quantum gravity scale. For sufficiently small values of this parameter, the universe can enter a stage of eternal self-reproduction.

Loop quantum cosmology: from pre-inflationary dynamics to observations

Classical and Quantum Gravity, 2015

The Planck collaboration has provided us rich information about the early universe, and a host of new observational missions will soon shed further light on the 'anomalies' that appear to exist on the largest angular scales. From a quantum gravity perspective, it is natural to inquire if one can trace back the origin of such puzzling features to Planck scale physics. Loop quantum cosmology provides a promising avenue to explore this issue because of its natural resolution of the big bang singularity. Thanks to advances over the last decade, the theory has matured sufficiently to allow concrete calculations of the phenomenological consequences of its pre-inflationary dynamics. In this article we summarize the current status of the ensuing two-way dialog between quantum gravity and observations.

Inflationary Cosmology and Oscillating Universes in Loop Quantum Cosmology

International Journal of Modern Physics A, 2005

We study oscillatory universes within the context of Loop Quantum Cosmology. We make a comparative study of flat and positively curved universes sourced by scalar fields with either positive or negative potentials. We investigate how oscillating universes can set the initial conditions for successful slow-roll inflation, while ensuring that the semi-classical bounds are satisfied. We observe rich oscillatory dynamics with negative potentials, although it is difficult to respect the semi-classical bounds in models of this type.

The consistent histories approach to loop quantum cosmology

We review the application of the consistent (or decoherent) histories formulation of quantum theory to canonical loop quantum cosmology. Conventional quantum theory relies crucially on "measurements" to convert unrealized quantum potentialities into physical outcomes that can be assigned probabilities. In the early universe and other physical contexts in which there are no observers or measuring apparatus (or indeed, in any closed quantum system), what criteria determine which alternative outcomes may be realized and what their probabilities are? In the consistent histories formulation it is the vanishing of interference between the branch wave functions describing alternative histories -- as determined by the system's decoherence functional -- that determines which alternatives may be assigned probabilities. We describe the consistent histories formulation and how it may be applied to canonical loop quantum cosmology, describing in detail the application to homogeneous and isotropic cosmological models with scalar matter. We show how the theory may be used to make definite physical predictions in the absence of "observers". As an application, we demonstrate how the theory predicts that loop quantum models "bounce" from large volume to large volume, while conventional "Wheeler-DeWitt"-quantized universes are invariably singular. We also briefly indicate the relation to other work.

An emergent universe from a loop

Physical Review D, 2005

Closed, singularity-free, inflationary cosmological models have recently been studied in the context of general relativity. Despite their appeal, these so called emergent models suffer from a number of limitations. These include the fact that they rely on an initial Einstein static state to describe the past eternal phase of the universe. Given the instability of such a state within the context of general relativity, this amounts to a very severe fine tuning. Also in order to be able to study the dynamics of the universe within the context of general relativity, they set the initial conditions for the universe in the classical phase. Here we study the existence and stability of such models in the context of Loop Quantum Cosmology and show that both these limitations can be partially remedied, once semi-classical effects are taken into account. An important consequence of these effects is to give rise to a static solution (not present in GR), which dynamically is a centre equilibrium point and located in the more natural semi-classical regime. This allows the construction of emergent models in which the universe oscillates indefinitely about such an initial static state. We construct an explicit emergent model of this type, in which a non-singular past eternal oscillating universe enters a phase where the symmetry of the oscillations is broken, leading to an emergent inflationary epoch, while satisfying all observational and semi-classical constraints. We also discuss emergent models in which the universe possesses both early-and late-time accelerating phases.

The pre-inflationary dynamics of loop quantum cosmology: confronting quantum gravity with observations

Classical and Quantum Gravity, 2013

Using techniques from loop quantum gravity, the standard theory of cosmological perturbations was recently generalized to encompass the Planck era. We now apply this framework to explore pre-inflationary dynamics. The framework enables us to isolate and resolve the true trans-Planckian difficulties, with interesting lessons both for theory and observations. Specifically, for a large class of initial conditions at the bounce, we are led to a self consistent extension of the inflationary paradigm over the 11 orders of magnitude in density and curvature, from the big bounce to the onset of slow roll. In addition, for a narrow window of initial conditions, there are departures from the standard paradigm, with novel effects-such as a modification of the consistency relation between the ratio of the tensor to scalar power spectrum and the tensor spectral index, as well as a new source for non-Gaussianities-which could extend the reach of cosmological observations to the deep Planck regime of the early universe.

Loop Quantum Cosmology corrections to inflationary models

2008

In the recent years the quantization methods of Loop Quantum Gravity have been successfully applied to the homogeneous and isotropic Friedmann-Robertson-Walker space-times. The resulting theory, called Loop Quantum Cosmology (LQC), resolves the Big Bang singularity by replacing it with the Big Bounce. We argue that LQC generates also certain corrections to field theoretical inflationary scenarios. These corrections imply that in the LQC the effective sonic horizon becomes infinite at some point after the bounce and that the scale of the inflationary potential implied by the COBE normalisation increases. The evolution of scalar fields immediately after the Bounce becomes modified in an interesting way. We point out that one can use COBE normalisation to establish an upper bound on the quantum of length of LQG.

Loop quantum cosmology: a status report

Classical and Quantum Gravity, 2011

Loop quantum cosmology (LQC) is the result of applying principles of loop quantum gravity (LQG) to cosmological settings. The distinguishing feature of LQC is the prominent role played by the quantum geometry effects of LQG. In particular, quantum geometry creates a brand new repulsive force which is totally negligible at low space-time curvature but rises very rapidly in the Planck regime, overwhelming the classical gravitational attraction. In cosmological models, while Einstein's equations hold to an excellent degree of approximation at low curvature, they undergo major modifications in the Planck regime: For matter satisfying the usual energy conditions any time a curvature invariant grows to the Planck scale, quantum geometry effects dilute it, thereby resolving singularities of general relativity. Quantum geometry corrections become more sophisticated as the models become richer. In particular, in anisotropic models there are significant changes in the dynamics of shear potentials which tame their singular behavior in striking contrast to older results on anisotropies in bouncing models. Once singularities are resolved, the conceptual paradigm of cosmology changes and one has to revisit many of the standard issues-e.g., the 'horizon problem'-from a new perspective. Such conceptual issues as well as potential observational consequences of the new Planck scale physics are being explored, especially within the inflationary paradigm. These considerations have given rise to a burst of activity in LQC in recent years, with contributions from quantum gravity experts, mathematical physicists and cosmologists. The goal of this article is to provide an overview of the current state of the art in LQC for three sets of audiences: young researchers interested in entering this area; the quantum gravity community in general; and, cosmologists who wish to apply LQC to probe modifications in the standard paradigm of the early universe. An effort has been made to streamline the material so that each of these communities can read only the sections they are most interested in, without a loss of continuity.

On solutions of loop quantum cosmology

The European Physical Journal C, 2013

Loop quantum cosmology is considered in inflationary era. A slow rolling scalar field solution with power law potential is presented in the neighborhood of transition time, i.e. when the universe enters inflationary phase from super-inflation era. The second and the generalized second laws of thermodynamics and their validities and violations are discussed and elucidated through some examples.