Schr��dinger operators with many bound states (original) (raw)
Abstract
Abstract Consider the Schr��dinger operators $ H_ {\ pm}=-d^ 2/dx^ 2\ pm V (x) .Wepresentamethodforestimatingthepotentialintermsofthenegativeeigenvaluesoftheseoperators.AmongtheapplicationsareinverseLieb−Thirringinequalitiesandseveralsharpresultsconcerningthespectralpropertiesof. We present a method for estimating the potential in terms of the negative eigenvalues of these operators. Among the applications are inverse Lieb-Thirring inequalities and several sharp results concerning the spectral properties of .Wepresentamethodforestimatingthepotentialintermsofthenegativeeigenvaluesoftheseoperators.AmongtheapplicationsareinverseLieb−Thirringinequalitiesandseveralsharpresultsconcerningthespectralpropertiesof H_ {\ pm} $
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (33)
- M. Christ and A. Kiselev, WKB asymptotic behavior of almost all generalized eigenfunctions for one-dimensional Schrödinger operators with slowly decaying potentials, J. Funct. Anal. 179 (2001), 426-447.
- M. Christ and A. Kiselev, WKB and spectral analysis of one-dimensional Schrödinger oper- ators with slowly varying potentials, Commun. Math. Phys. 218 (2001), 245-262.
- R. Courant and D. Hilbert, Methods of Mathematical Physics. Vol. I. Interscience Publishers, Inc., New York, 1953.
- D. Damanik, D. Hundertmark, R. Killip, and B. Simon, Variational estimates for discrete Schrödinger operators with potentials of indefinite sign, Commun. Math. Phys. 238 (2003), 545-562.
- D. Damanik and R. Killip, Half-line Schrödinger operators with no bound states, Acta Math. 193 (2004), 31-72
- D. Damanik, R. Killip, and B. Simon, Schrödinger operators with few bound states, Commun. Math. Phys. 258 (2005), 741-750.
- P. Deift and R. Killip, On the absolutely continuous spectrum of one-dimensional Schrödinger operators with square summable potentials, Commun. Math. Phys. 203 (1999), 341-347.
- S.A. Denisov, On the application of some of M.G. Krein's results to the spectral analysis of Sturm-Liouville operators, J. Math. Anal. Appl. 261 (2001), 177-191.
- M.S.P. Eastham, The Asympotic Solution of Linear Differential Systems. London Mathe- matical Society Monographs, New Series, vol. 4, Oxford University Press, Oxford 1989.
- K.J. Falconer, The Geometry of Fractal Sets. Cambridge University Press, Cambridge, 1985.
- C. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. 9 (1983), 129-206.
- V. Glaser, H. Grosse, and A. Martin, Bounds on the number of eigenvalues of the Schrödinger operator, Commun. Math. Phys. 59 (1978), 197-212.
- C. Jacobi, Zur Theorie der Variations-Rechnung und der Differential-Gleichungen, J. Reine Angew. Math. 17 (1837), 68-82.
- R. Killip and B. Simon, Sum rules for Jacobi matrices and their applications to spectral theory, Ann. Math. 158 (2003), 253-321.
- A. Kiselev, Y. Last, and B. Simon, Modified Prüfer and EFGP transforms and the spectral analysis of one-dimensional Schrödinger operators, Commun. Math. Phys. 194 (1998), 1-45.
- M.G. Krein, Continuous analogues of propositions on polynomials orthogonal on the unit circle (Russian), Dokl. Akad. Nauk SSSR 105 (1955), 637-640.
- S. Kupin, On a spectral property of Jacobi matrices, Proc. Amer. Math. Soc. 132 (2004), 1377-1383.
- A. Laptev, S. Naboko, and O. Safronov, On new relations between spectral properties of Jacobi matrices and their coefficients, Commun. Math. Phys. 241 (2003), 91-110.
- A. Laptev and T. Weidl, Recent results on Lieb-Thirring inequalities, Journées " Équations aux Dérivées Partielles" (La Chapelle sur Erdre, 2000 ), Exp. No. XX, 14 pp., Univ. Nantes, Nantes, 2000.
- C. Muscalu, T. Tao, and C. Thiele, A counterexample to a multilinear endpoint question of Christ and Kiselev, Math. Res. Letters 10 (2003), 237-246.
- C. Muscalu, T. Tao, and C. Thiele, A Carleson theorem for a Cantor group model of the scattering transform, Nonlinearity 16 (2003), 219-246.
- F. Nazarov, F. Peherstorfer, A. Volberg, and P. Yuditskii, On generalized sum rules for Jacobi matrices, Int. Math. Res. Not. 2005:3 (2005), 155-186
- M. Reed and B. Simon, Methods of Modern Mathematical Physics, IV. Analysis of Operators. Academic Press, New York 1978.
- C. Remling, The absolutely continuous spectrum of one-dimensional Schrödinger operators with decaying potentials, Commun. Math. Phys. 193 (1998), 151-170.
- C. Remling, Embedded singular continuous spectrum for one-dimensional Schrödinger oper- ators, Trans. Amer. Math. Soc. 351 (1999), 2479-2497.
- C. Remling, Bounds on embedded singular spectrum for one-dimensional Schrödinger oper- ators, Proc. Amer. Math. Soc. 128 (2000), 161-171.
- A. Rybkin, On the absolutely continuous and negative discrete spectra of Schrödinger oper- ators on the line with locally integrable globally square summable potentials, J. Math. Phys. 45 (2004), 1418-1425.
- O. Safronov, Multi-dimensional Schrödinger operators with some negative spectrum, preprint, electronically available at www.ma.utexas.edu/mp arc-bin/mpa?yn=06-25.
- U.-W. Schmincke, On Schrödinger's factorization method for Sturm-Liouville operators, Proc. Roy. Soc. Edinburgh A 80 (1978), 67-84.
- B. Simon and A. Zlatoš, Sum rules and the Szegő condition for orthogonal polynomials on the real line, Commun. Math. Phys. 242 (2003), 393-423.
- A. Teplyaev, A note on the theorems of M.G. Krein and L.A. Sakhnovich on continuous analogs of orthogonal polynomials on the circle, J. Funct. Anal. 226 (2005), 257-280.
- V.E. Zakharov and L.D. Faddeev, Korteweg de Vries equation: a completely integrable Hamil- tonian system, Funct. Anal. Appl. 5 (1971), 280-287.
- A. Zygmund, Trigonometric Series, Vol. I, II. Cambridge University Press, Cambridge 1959. Mathematics 253-37, California Institute of Technology, Pasadena, CA 91125 E-mail address: damanik@caltech.edu URL: math.caltech.edu/people/damanik.html