Schr��dinger operators with many bound states (original) (raw)

Abstract

Abstract Consider the Schr��dinger operators $ H_ {\ pm}=-d^ 2/dx^ 2\ pm V (x) .Wepresentamethodforestimatingthepotentialintermsofthenegativeeigenvaluesoftheseoperators.AmongtheapplicationsareinverseLieb−Thirringinequalitiesandseveralsharpresultsconcerningthespectralpropertiesof. We present a method for estimating the potential in terms of the negative eigenvalues of these operators. Among the applications are inverse Lieb-Thirring inequalities and several sharp results concerning the spectral properties of .Wepresentamethodforestimatingthepotentialintermsofthenegativeeigenvaluesoftheseoperators.AmongtheapplicationsareinverseLiebThirringinequalitiesandseveralsharpresultsconcerningthespectralpropertiesof H_ {\ pm} $

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (33)

  1. M. Christ and A. Kiselev, WKB asymptotic behavior of almost all generalized eigenfunctions for one-dimensional Schrödinger operators with slowly decaying potentials, J. Funct. Anal. 179 (2001), 426-447.
  2. M. Christ and A. Kiselev, WKB and spectral analysis of one-dimensional Schrödinger oper- ators with slowly varying potentials, Commun. Math. Phys. 218 (2001), 245-262.
  3. R. Courant and D. Hilbert, Methods of Mathematical Physics. Vol. I. Interscience Publishers, Inc., New York, 1953.
  4. D. Damanik, D. Hundertmark, R. Killip, and B. Simon, Variational estimates for discrete Schrödinger operators with potentials of indefinite sign, Commun. Math. Phys. 238 (2003), 545-562.
  5. D. Damanik and R. Killip, Half-line Schrödinger operators with no bound states, Acta Math. 193 (2004), 31-72
  6. D. Damanik, R. Killip, and B. Simon, Schrödinger operators with few bound states, Commun. Math. Phys. 258 (2005), 741-750.
  7. P. Deift and R. Killip, On the absolutely continuous spectrum of one-dimensional Schrödinger operators with square summable potentials, Commun. Math. Phys. 203 (1999), 341-347.
  8. S.A. Denisov, On the application of some of M.G. Krein's results to the spectral analysis of Sturm-Liouville operators, J. Math. Anal. Appl. 261 (2001), 177-191.
  9. M.S.P. Eastham, The Asympotic Solution of Linear Differential Systems. London Mathe- matical Society Monographs, New Series, vol. 4, Oxford University Press, Oxford 1989.
  10. K.J. Falconer, The Geometry of Fractal Sets. Cambridge University Press, Cambridge, 1985.
  11. C. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. 9 (1983), 129-206.
  12. V. Glaser, H. Grosse, and A. Martin, Bounds on the number of eigenvalues of the Schrödinger operator, Commun. Math. Phys. 59 (1978), 197-212.
  13. C. Jacobi, Zur Theorie der Variations-Rechnung und der Differential-Gleichungen, J. Reine Angew. Math. 17 (1837), 68-82.
  14. R. Killip and B. Simon, Sum rules for Jacobi matrices and their applications to spectral theory, Ann. Math. 158 (2003), 253-321.
  15. A. Kiselev, Y. Last, and B. Simon, Modified Prüfer and EFGP transforms and the spectral analysis of one-dimensional Schrödinger operators, Commun. Math. Phys. 194 (1998), 1-45.
  16. M.G. Krein, Continuous analogues of propositions on polynomials orthogonal on the unit circle (Russian), Dokl. Akad. Nauk SSSR 105 (1955), 637-640.
  17. S. Kupin, On a spectral property of Jacobi matrices, Proc. Amer. Math. Soc. 132 (2004), 1377-1383.
  18. A. Laptev, S. Naboko, and O. Safronov, On new relations between spectral properties of Jacobi matrices and their coefficients, Commun. Math. Phys. 241 (2003), 91-110.
  19. A. Laptev and T. Weidl, Recent results on Lieb-Thirring inequalities, Journées " Équations aux Dérivées Partielles" (La Chapelle sur Erdre, 2000 ), Exp. No. XX, 14 pp., Univ. Nantes, Nantes, 2000.
  20. C. Muscalu, T. Tao, and C. Thiele, A counterexample to a multilinear endpoint question of Christ and Kiselev, Math. Res. Letters 10 (2003), 237-246.
  21. C. Muscalu, T. Tao, and C. Thiele, A Carleson theorem for a Cantor group model of the scattering transform, Nonlinearity 16 (2003), 219-246.
  22. F. Nazarov, F. Peherstorfer, A. Volberg, and P. Yuditskii, On generalized sum rules for Jacobi matrices, Int. Math. Res. Not. 2005:3 (2005), 155-186
  23. M. Reed and B. Simon, Methods of Modern Mathematical Physics, IV. Analysis of Operators. Academic Press, New York 1978.
  24. C. Remling, The absolutely continuous spectrum of one-dimensional Schrödinger operators with decaying potentials, Commun. Math. Phys. 193 (1998), 151-170.
  25. C. Remling, Embedded singular continuous spectrum for one-dimensional Schrödinger oper- ators, Trans. Amer. Math. Soc. 351 (1999), 2479-2497.
  26. C. Remling, Bounds on embedded singular spectrum for one-dimensional Schrödinger oper- ators, Proc. Amer. Math. Soc. 128 (2000), 161-171.
  27. A. Rybkin, On the absolutely continuous and negative discrete spectra of Schrödinger oper- ators on the line with locally integrable globally square summable potentials, J. Math. Phys. 45 (2004), 1418-1425.
  28. O. Safronov, Multi-dimensional Schrödinger operators with some negative spectrum, preprint, electronically available at www.ma.utexas.edu/mp arc-bin/mpa?yn=06-25.
  29. U.-W. Schmincke, On Schrödinger's factorization method for Sturm-Liouville operators, Proc. Roy. Soc. Edinburgh A 80 (1978), 67-84.
  30. B. Simon and A. Zlatoš, Sum rules and the Szegő condition for orthogonal polynomials on the real line, Commun. Math. Phys. 242 (2003), 393-423.
  31. A. Teplyaev, A note on the theorems of M.G. Krein and L.A. Sakhnovich on continuous analogs of orthogonal polynomials on the circle, J. Funct. Anal. 226 (2005), 257-280.
  32. V.E. Zakharov and L.D. Faddeev, Korteweg de Vries equation: a completely integrable Hamil- tonian system, Funct. Anal. Appl. 5 (1971), 280-287.
  33. A. Zygmund, Trigonometric Series, Vol. I, II. Cambridge University Press, Cambridge 1959. Mathematics 253-37, California Institute of Technology, Pasadena, CA 91125 E-mail address: damanik@caltech.edu URL: math.caltech.edu/people/damanik.html