Analysis of lip geometric features for audio-visual speech recognition (original) (raw)

2004, IEEE Transactions on Systems, Man, and Cybernetics

Audio-visual speech recognition employing both acoustic and visual speech information is a novel extension of acoustic speech recognition and it significantly improves the recognition accuracy in noisy environments. Although various audio-visual speech-recognition systems have been developed, a rigorous and detailed comparison of the potential geometric visual features from speakers' faces is essential. Thus, in this paper the geometric visual features are compared and analyzed rigorously for their importance in audio-visual speech recognition. Experimental results show that among the geometric visual features analyzed, lip vertical aperture is the most relevant; and the visual feature vector formed by vertical and horizontal lip apertures and the first-order derivative of the lip corner angle leads to the best recognition results. Speech signals are modeled by hidden Markov models (HMMs) and using the optimized HMMs and geometric visual features the accuracy of acoustic-only, visual-only, and audiovisual speech recognition methods are compared. The audio-visual speech recognition scheme has a much improved recognition accuracy compared to acoustic-only and visual-only speech recognition especially at high noise levels. The experimental results showed that a set of as few as three labial geometric features are sufficient to improve the recognition rate by as much as 20% (from 62%, with acoustic-only information, to 82%, with audio-visual information at a signal-to-noise ratio of 0 dB).

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact