Evolutionary diversification and geographical isolation in Dubautia laxa (Asteraceae), a widespread member of the Hawaiian silversword alliance (original) (raw)

ECOLOGICAL SPECIATION IN THE EAST MAUI–ENDEMIC DUBAUTIA (ASTERACEAE) SPECIES

Evolution, 2006

Adaptive diversification can be viewed as a balance between the conservative force of interpopulation gene flow and selection for differential environments. In this paper, we examine ecological, morphological, and genetic differentiation in a small clade consisting of four East Maui-endemic species of Dubautia: D. menziesii, D. platyphylla, D. reticulata, and D. waianapanapaensis, in the Hawaiian silversword alliance (Asteraceae). The East Maui clade is apparently recently derived (less than 1 million years ago) and is geographically restricted yet displays significant ecological and morphological differences. We used geographic data from historical herbarium specimens, measurements of plant architecture and leaf morphometrics, and measures of genetic differentiation in both microsatellite and nuclear coding loci to examine the correlation of different forms of divergence in this small species flock. We found overlap in large-scale geographic distributions, significant differentiation in most habitat factors, significant microsatellite differentiation, and many shared alleles at nuclear coding loci suggesting on-going lineage sorting. Despite the presence of apparent hybrids in some populations, microsatellite variation is consistent with isolation among species. Using Mantel tests, we compared the direction and extent of diversification among different datasets, to determine whether ecological/morphological divergence was correlated with genetic divergence. Correlations among different datasets showed that habitat was strongly correlated with plant architecture but not leaf morphology. Taken together, these results indicate that ecological and morphological diversification has driven genetic divergence at rapidly evolving microsatellite loci, whereas there is continuing lineage sorting at neutral sites in nuclear coding loci.

Diversity and divergence patterns in regulatory genes suggest differential gene flow in recently derived species of the Hawaiian silversword alliance adaptive radiation (Asteraceae)

Molecular ecology, 2007

The impact of gene flow and population size fluctuations in shaping genetic variation during adaptive radiation, at both the genome-wide and gene-specific levels, is very poorly understood. To examine how historical population size and gene flow patterns within and between loci have influenced lineage divergence in the Hawaiian silversword alliance, we have investigated the nucleotide sequence diversity and divergence patterns of four floral regulatory genes (ASAP1-A, ASAP1-B, ASAP3-A, ASAP3-B) and a structural gene (ASCAB9). Levels and patterns of molecular divergence across these five nuclear loci were estimated between two recently derived species (Dubautia ciliolata and Dubautia arborea) which are presumed to be sibling species. This multilocus analysis of genetic variation, haplotype divergence and historical demography indicates that population expansion and differential gene flow occurred subsequent to the divergence of these two lineages. Moreover, contrasting patterns of al...

Interspecific hybrid ancestry of a plant adaptive radiation: allopolyploidy of the Hawaiian silversword alliance (Asteraceae) inferred from floral homeotic gene duplications

Molecular Biology and Evolution, 1999

The polyploid Hawaiian silversword alliance (Asteraceae), a spectacular example of adaptive radiation in plants, was shown previously to have descended from North American tarweeds of the Madia/Raillardiopsis group, a primarily diploid assemblage. The origin of the polyploid condition in the silversword alliance was not resolved in earlier biosystematic, cytogenetic, and molecular studies, apart from the determination that polyploidy in modern species of Madia/Raillardiopsis arose independent of that of the Hawaiian group. We determined that two floral homeotic genes, ASAP3/TM6 and ASAP1, are found in duplicate copies within members of the Hawaiian silversword alliance and appear to have arisen as a result of interspecific hybridization between two North American tarweed species. Our molecular phylogenetic analyses of the ASAP3/TM6 loci suggest that the interspecific hybridization event in the ancestry of the Hawaiian silversword alliance involved members of lineages that include Raillardiopsis muirii (and perhaps Madia nutans) and Raillardiopsis scabrida. The ASAP1 analysis also indicates that the two species of Raillardiopsis are among the closest North American relatives of the Hawaiian silversword alliance. Previous biosystematic evidence demonstrates the potential for allopolyploid formation between members of the two North American tarweed lineages; a vigorous hybrid between R. muirii and R. scabrida has been produced that formed viable, mostly tetraporate (diploid) pollen, in keeping with observed meiotic failure. Various genetic consequences of allopolyploidy may help to explain the phenomenal evolutionary diversification of the silversword alliance.

Hybrid Origin and Genomic Mosaicism of Dubautia scabra (Hawaiian Silversword Alliance; Asteraceae, Madiinae)

Systematic Botany, 2008

Incongruence among different estimates of species relationships in plants, from different molecules, cytogenetic data, biogeographic data, morphological/anatomical data or other sources, has been used frequently as an indication of introgression, hybrid species origin, or chloroplast (cp) capture. In plants, these incongruences are most often seen between data derived from the nuclear vs. the cp genomes and the nuclear markers used for comparison usually have been from the nuclear ribosomal (nr) internal transcribed spacer region (ITS). The amount of genomic material shared between introgressing species can be highly variable. In some of these cases, other nuclear genomic regions have moved between species without leaving a signature on the nrITS. An example of well-supported phylogenetic incongruence is the placement of Dubautia scabra (DC.) D. D. Keck in the Hawaiian silversword alliance (HSA); evolutionary hypotheses for D. scabra based on molecular as opposed to cytogenetic data are strongly discordant. In this paper, we test these two conflicting phylogenetic hypotheses regarding the evolutionary relationships of Dubautia scabra using evidence from six low-copy nuclear genes, as well as multiple chloroplast noncoding regions and nrITS. The nrITS region is also examined for the presence of multiple copy types. Incongruence between inferred relationships based on nuclear chromosomal arrangements and molecular phylogenetic data from chloroplast DNA and nrITS is resolved in favor of a hypothesis of ancient hybridization rather than cytogenetic homoplasy involving dysploidy. Most single-copy nuclear genes track histories of D. scabra compatible with cytogenetic data whereas chloroplast and nrITS data track a common, different history that appears to reflect hybridization with a chromosomally distinct lineage that also occurs on Maui Nui and Hawai'i (the Big Island).

Hybrid origin and genomic mosaicism of Dubautia scabra (Hawaiian silversword alliance; Asteraceae, Madiinae)

Systematic Botany, 2008

Incongruence among different estimates of species relationships in plants, from different molecules, cytogenetic data, biogeographic data, morphological/anatomical data or other sources, has been used frequently as an indication of introgression, hybrid species origin, or chloroplast (cp) capture. In plants, these incongruences are most often seen between data derived from the nuclear vs. the cp genomes and the nuclear markers used for comparison usually have been from the nuclear ribosomal (nr) internal transcribed spacer region (ITS). The amount of genomic material shared between introgressing species can be highly variable. In some of these cases, other nuclear genomic regions have moved between species without leaving a signature on the nrITS. An example of well-supported phylogenetic incongruence is the placement of Dubautia scabra (DC.) D. D. Keck in the Hawaiian silversword alliance (HSA); evolutionary hypotheses for D. scabra based on molecular as opposed to cytogenetic data are strongly discordant. In this paper, we test these two conflicting phylogenetic hypotheses regarding the evolutionary relationships of Dubautia scabra using evidence from six low-copy nuclear genes, as well as multiple chloroplast noncoding regions and nrITS. The nrITS region is also examined for the presence of multiple copy types. Incongruence between inferred relationships based on nuclear chromosomal arrangements and molecular phylogenetic data from chloroplast DNA and nrITS is resolved in favor of a hypothesis of ancient hybridization rather than cytogenetic homoplasy involving dysploidy. Most single-copy nuclear genes track histories of D. scabra compatible with cytogenetic data whereas chloroplast and nrITS data track a common, different history that appears to reflect hybridization with a chromosomally distinct lineage that also occurs on Maui Nui and Hawai'i (the Big Island).

Continuation of the genetic divergence of ecological speciation by spatial environmental heterogeneity in island endemic plants

Scientific Reports

Divergent selection plays a critical role not only as a speciation driver but also in maintaining postspeciation divergence. In the absence of direct evidence, ancestral interspecific gene flow between incipient species can reflect ancient selective pressure for ecological speciation. In the present study, two late-Pleistocene diverged species endemic to Taiwan, Scutellaria playfairii and S. tashiroi, were spatially and ecologically partitioned with partial overlap. Multilocus genome-scan analyses and in silico evaluation revealed ancestral interspecific gene flow but distinct genetic compositions, implying that adaptive divergence contributed to their speciation. Ecological niche modeling and principal component analysis suggested incomplete divergent niches between the two species; the species distribution is therefore consistent with Hutchinson's metaphor of multidimensional hypervolume niches rather than attributable to a single factor. Constraint ordination analysis supported this inference of a combination of variables explaining the genetic structure. The rare occurrence of hybrids in the sympatric population suggested hybrid breakdown, providing further evidence of divergent selection blocking gene flow. The correlation of environmental variables with integrated genetic components demonstrated that environmental heterogeneity maintains the species and population differentiation. This study highlights the importance of environmental heterogeneity and divergent selection for the rapid speciation and recent diversification of island plants. In addition to accelerating speciation, divergent selection is also responsible for maintaining differences between species. Studies have increasingly shown that environmental variables, rather than geographic distance, are responsible for genetic divergence 1-3 , indicating the importance of surrounding environments for species evolution. Via 4 proposed two stages of selective pressure on ecological speciation and divergence. Stage 1 involves selection against effective migration, and stage 2 involves independent responses to selection within the new lineages. Stage 1 was suggested to clearly define the difference between allopatric and sympatric speciation 4, 5 , whereas directional selection could further independently act on the diverged lineages to reduce the potential for interspecific mating upon physical contact after speciation 4, 6, 7. However, because past environmental conditions are difficult to record, present environmental heterogeneity can usually explain post-speciation divergence but not the actual driving force for ecological speciation, i.e., only stage 2 of Via can be verified 4. Since ecological speciation is a time-dependent process, i.e., genomic barriers for gene flow gradually increase between adaptively divergent species 5, 8 , detecting the degrees of interspecific gene flow through time can support or reject ecological speciation. A selective process leads to species (or population) divergence more rapidly than a stochastic drift process 9, 10. Hence, gene flow will rapidly be blocked if the selection continues to maintain or enhance the divergence. The development of modeling-based simulation analyses such as the approximate Bayesian computation (ABC) has enabled the evaluation of the best-fit evolutionary scenario of isolation vs. gene flow to resolve the speciation hypothesis. In combination with correlation analysis between genetic variation and

Interpretation of patterns of genetic variation in endemic plant species of oceanic islands

Botanical Journal of the Linnean Society, 2014

Oceanic islands offer special opportunities for understanding the patterns and processes of evolution. The availability of molecular markers in recent decades has enhanced these opportunities, facilitating the use of population genetics to reveal divergence and speciation in island systems. A common pattern seen in taxa on oceanic islands is a decreased level of genetic variation within and among populations, and the founder effect has often been invoked to explain this observation. Founder effects have a major impact on immigrant populations, but, over millions of years, the original genetic signature will normally be erased as a result of mutation, recombination, drift and selection. Therefore, the types and degrees of genetic modifications that occur must often be caused by other factors, which should be considered when explaining the patterns of genetic variation. The age of the island is extremely important because oceanic islands subside on their submarine plates over time. Erosion caused by wind, rain and wave action combine to grind down soft volcanic substrates. These geomorphological events can have a dramatic impact on population number and size, and hence levels of genetic diversity. The mode of speciation is also of significance. With anagenesis, genetic variation accumulates through time, whereas, with cladogenenesis, the gene pool splits into populations of adaptively radiating species. Breeding systems, population sizes and generation times are also important, as is hybridization between closely related taxa. Human disturbance has affected plant population number and size through the harvesting of forests and the introduction of invasive plants and animals. Therefore, the explanation of the observed levels of genetic variation in species of oceanic islands requires the consideration of many interconnected physical, biological and anthropomorphic factors.

Geographical distance and barriers explain population genetic patterns in an endangered island perennial

AoB PLANTS, 2016

Island plants are frequently used as model systems in evolutionary biology to understand factors that might explain genetic diversity and population differentiation levels. Theory suggests that island plants should have lower levels of genetic diversity than their continental relatives, but this hypothesis has been rejected in several recent studies. In the Azores, the population level genetic diversity is generally low. But, like in most island systems, there are high levels of genetic differentiation between different islands. The Azores lettuce, Lactuca watsoniana, is an endangered Asteraceae with small population sizes. Therefore, we expect to find a lower level of genetic diversity than in the other more common endemic Asteraceae. The intra- and interpopulation genetic structure and diversity of L. watsoniana was assessed using eight newly developed microsatellite markers. We included 135 individuals, from all 13 known populations in the study. Because our microsatellite result...

Do island plant populations really have lower genetic variation than mainland populations? Effects of selection and distribution range on genetic diversity estimates

Molecular Ecology, 2015

Ecological and evolutionary studies largely assume that island populations display low levels of neutral genetic variation. However, this notion has only been formally tested in a few cases involving plant taxa, and the confounding effect of selection on genetic diversity (GD) estimates based on putatively neutral markers has typically been overlooked. Here, we generated nuclear microsatellite and plastid DNA sequence data in Periploca laevigata, a plant taxon with an island-mainland distribution area, to (i) investigate whether selection affects GD estimates of populations across contrasting habitats; and (ii) test the long-standing idea that island populations have lower GD than their mainland counterparts. Plastid data showed that colonization of the Canary Islands promoted strong lineage divergence within P. laevigata, which was accompanied by selective sweeps at several nuclear microsatellite loci. Inclusion of loci affected by strong divergent selection produced a significant downward bias in the GD estimates of the mainland lineage, but such underestimates were substantial (>14%) only when more than one loci under selection were included in the computations. When loci affected by selection were removed, we did not find evidence that insular Periploca populations have less GD than their mainland counterparts. The analysis of data obtained from a comprehensive literature survey reinforced this result, as overall comparisons of GD estimates between island and mainland populations were not significant across plant taxa (N = 66), with the only exception of island endemics with narrow distributions. This study suggests that identification and removal of markers potentially affected by selection should be routinely implemented in estimates of GD, particularly if different lineages are compared. Furthermore, it provides compelling evidence that the expectation of low GD cannot be generalized to island plant populations.