Reinforcement learning for operational space (original) (raw)
Related papers
Learning operational space control
2006
Abstract—While operational space control is of essential im-portance for robotics and well-understood from an analytical point of view, it can be prohibitively hard to achieve accurate control in face of modeling errors, which are inevitable in complex robots, eg, humanoid robots. In such cases, learning control methods can offer an interesting alternative to analytical control algorithms.
Learning to control in operational space
2008
Abstract One of the most general frameworks for phrasing control problems for complex, redundant robots is operational-space control. However, while this framework is of essential importance for robotics and well understood from an analytical point of view, it can be prohibitively hard to achieve accurate control in the face of modeling errors, which are inevitable in complex robots (eg humanoid robots). In this paper, we suggest a learning approach for operational-space control as a direct inverse model learning problem.
Reinforcement learning by reward-weighted regression for operational space control
2007
Abstract Many robot control problems of practical importance, including operational space control, can be reformulated as immediate reward reinforcement learning problems. However, few of the known optimization or reinforcement learning algorithms can be used in online learning control for robots, as they are either prohibitively slow, do not scale to interesting domains of complex robots, or require trying out policies generated by random search, which are infeasible for a physical system.
2010
Abstract Recent trends in robot learning are to use trajectory-based optimal control techniques and reinforcement learning to scale complex robotic systems. On the one hand, increased computational power and multiprocessing, and on the other hand, probabilistic reinforcement learning methods and function approximation, have contributed to a steadily increasing interest in robot learning. Imitation learning has helped significantly to start learning with reasonable initial behavior.
Reinforcement learning for humanoid robots—policy gradients and beyond
2003
Reinforcement learning offers one of the most general frameworks to take traditional robotics towards true autonomy and versatility. However, applying reinforcement learning to high dimensional movement systems like humanoid robots remains an unsolved problem. In this paper, we discuss different approaches of reinforcement learning in terms of their applicability in humanoid robotics.
Reinforcement Learning in Robotics: A Survey
Reinforcement learning offers to robotics a framework and set of tools for the design of sophisticated and hard-to-engineer behaviors. Conversely, the challenges of robotic problems provide both inspiration, impact, and validation for developments in reinforcement learning. The relationship between disciplines has sufficient promise to be likened to that between physics and mathematics. In this article, we attempt to strengthen the links between the two research communities by providing a survey of work in reinforcement learning for behavior generation in robots. We highlight both key challenges in robot reinforcement learning as well as notable successes. We discuss how contributions tamed the complexity of the domain and study the role of algorithms, representations, and prior knowledge in achieving these successes. As a result, a particular focus of our paper lies on the choice between model-based and model-free as well as between value function-based and policy search methods. By analyzing a simple problem in some detail we demonstrate how reinforcement learning approaches may be profitably applied, and we note throughout open questions and the tremendous potential for future research.
Reinforcement learning control of robot manipulator
Revista Brasileira de Computação Aplicada, 2021
Since the establishment of robotics in industrial applications, industrial robot programming involves therepetitive and time-consuming process of manually specifying a fixed trajectory, which results in machineidle time in terms of production and the necessity of completely reprogramming the robot for different tasks.The increasing number of robotics applications in unstructured environments requires not only intelligent butalso reactive controllers, due to the unpredictability of the environment and safety measures respectively. This paper presents a comparative analysis of two classes of Reinforcement Learning algorithms, value iteration (Q-Learning/DQN) and policy iteration (REINFORCE), applied to the discretized task of positioning a robotic manipulator in an obstacle-filled simulated environment, with no previous knowledge of the obstacles’ positions or of the robot arm dynamics. The agent’s performance and algorithm convergence are analyzed under different reward functions and...
Reinforcement Learning in Robotics: Applications and Real-World Challenges
In robotics, the ultimate goal of reinforcement learning is to endow robots with the ability to learn, improve, adapt and reproduce tasks with dynamically changing constraints based on exploration and autonomous learning. We give a summary of the state-of-the-art of reinforcement learning in the context of robotics, in terms of both algorithms and policy representations. Numerous challenges faced by the policy representation in robotics are identified. Three recent examples for the application of reinforcement learning to real-world robots are described: a pancake flipping task, a bipedal walking energy minimization task and an archery-based aiming task. In all examples, a state-of-the-art expectation-maximization-based reinforcement learning is used, and different policy representations are proposed and evaluated for each task. The proposed policy representations offer viable solutions to six rarely-addressed challenges in policy representations: correlations, adaptability, multi-resolution, globality, multi-dimensionality and convergence. Both the successes and the practical difficulties encountered in these examples are discussed. Based on insights from these particular cases, conclusions are drawn about the state-of-the-art and the future perspective directions for reinforcement learning in robotics.
Hybrid Dynamic Control Algorithm for Humanoid Robots Based on Reinforcement Learning
Journal of Intelligent and Robotic Systems, 2008
In this paper, hybrid integrated dynamic control algorithm for humanoid locomotion mechanism is presented. The proposed structure of controller involves two feedback loops: model-based dynamic controller including impart-force controller and reinforcement learning feedback controller around zero-moment point. The proposed new reinforcement learning algorithm is based on modified version of actor-critic architecture for dynamic reactive compensation. Simulation experiments were carried out in order to validate the proposed control approach.The obtained simulation results served as the basis for a critical evaluation of the controller performance.