Guimier, Anne et al. (2016) The American Journal of Human Genetics - Biallelic PPA2 Mutations Cause Sudden Unexpected Cardiac Arrest in Infancy (original) (raw)
Related papers
Biallelic PPA2 Mutations Cause Sudden Unexpected Cardiac Arrest in Infancy
The American Journal of Human Genetics, 2016
Sudden unexpected death in infancy occurs in apparently healthy infants and remains largely unexplained despite thorough investigation. The vast majority of cases are sporadic. Here we report seven individuals from three families affected by sudden and unexpected cardiac arrest between 4 and 20 months of age. Whole-exome sequencing revealed compound heterozygous missense mutations in PPA2 in affected infants of each family. PPA2 encodes the mitochondrial pyrophosphatase, which hydrolyzes inorganic pyrophosphate into two phosphates. This is an essential activity for many biosynthetic reactions and for energy metabolism of the cell. We show that deletion of the orthologous gene in yeast (ppa2D) compromises cell viability due to the loss of mitochondria. Expression of wild-type human PPA2, but not PPA2 containing the mutations identified in affected individuals, preserves mitochondrial function in ppa2D yeast. Using a regulatable (doxycycline-repressible) gene expression system, we found that the pathogenic PPA2 mutations rapidly inactivate the mitochondrial energy transducing system and prevent the maintenance of a sufficient electrical potential across the inner membrane, which explains the subsequent disappearance of mitochondria from the mutant yeast cells. Altogether these data demonstrate that PPA2 is an essential gene in yeast and that biallelic mutations in PPA2 cause a mitochondrial disease leading to sudden cardiac arrest in infants.
Sudden Cardiac Death due to Deficiency of the Mitochondrial Inorganic Pyrophosphatase PPA2
American journal of human genetics, 2016
We have used whole-exome sequencing in ten individuals from four unrelated pedigrees to identify biallelic missense mutations in the nuclear-encoded mitochondrial inorganic pyrophosphatase (PPA2) that are associated with mitochondrial disease. These individuals show a range of severity, indicating that PPA2 mutations may cause a spectrum of mitochondrial disease phenotypes. Severe symptoms include seizures, lactic acidosis, cardiac arrhythmia, and death within days of birth. In the index family, presentation was milder and manifested as cardiac fibrosis and an exquisite sensitivity to alcohol, leading to sudden arrhythmic cardiac death in the second decade of life. Comparison of normal and mutant PPA2-containing mitochondria from fibroblasts showed that the activity of inorganic pyrophosphatase was significantly reduced in affected individuals. Recombinant PPA2 enzymes modeling hypomorphic missense mutations had decreased activity that correlated with disease severity. These finding...
PPA2-associated sudden cardiac death: extending the clinical and allelic spectrum in 20 new families
Genetics in Medicine
Purpose Biallelic hypomorphic variants in PPA2, encoding the mitochondrial inorganic pyrophosphatase 2 protein, have been recently identified in individuals presenting with sudden cardiac death, occasionally triggered by alcohol intake or a viral infection. Here we report 20 new families harboring PPA2 variants. Methods Synthesis of clinical and molecular data concerning 34 individuals harboring five previously reported PPA2 variants and 12 novel variants, 11 of which were functionally characterized. Results Among the 34 individuals, only 6 remain alive. Twenty-three died before the age of 2 years while five died between 14 and 16 years. Within these 28 cases, 15 died of sudden cardiac arrest and 13 of acute heart failure. One case was diagnosed prenatally with cardiomyopathy. Four teenagers drank alcohol before sudden cardiac arrest. Progressive neurological signs were observed in 2/6 surviving individuals. For 11 variants, recombinant PPA2 enzyme activities were significantly decr...
Mitochondrial Phosphate–Carrier Deficiency: A Novel Disorder of Oxidative Phosphorylation
The American Journal of Human Genetics, 2007
The mitochondrial phosphate carrier SLC25A3 transports inorganic phosphate into the mitochondrial matrix, which is essential for the aerobic synthesis of adenosine triphosphate (ATP). We identified a homozygous mutation-c.215GrA (p.Gly72Glu)-in the alternatively spliced exon 3A of this enzyme in two siblings with lactic acidosis, hypertrophic cardiomyopathy, and muscular hypotonia who died within the 1st year of life. Functional investigation of intact mitochondria showed a deficiency of ATP synthesis in muscle but not in fibroblasts, which correlated with the tissuespecific expression of exon 3A in muscle versus exon 3B in fibroblasts. The enzyme defect was confirmed by complementation analysis in yeast. This is the first report of patients with mitochondrial phosphate-carrier deficiency.
Genomics, 2006
Pyrophosphatases (PPases) catalyze the hydrolysis of inorganic pyrophosphate generated in several cellular enzymatic reactions. A novel human pyrophosphatase cDNA encoding a 334-amino-acid protein å60% identical to the previously identified human cytosolic PPase was cloned and characterized. The novel enzyme, named PPase-2, was enzymatically active and catalyzed hydrolysis of pyrophosphate at a rate similar to that of the previously identified PPase-1. A functional mitochondrial import signal sequence was identified in the N-terminus of PPase-2, which targeted the enzyme to the mitochondrial matrix. The human pyrophosphatase 2 gene (PPase-2) was mapped to chromosome 4q25 and the 1.4-kb mRNA was ubiquitously expressed in human tissues, with highest levels in muscle, liver, and kidney. The yeast homologue of the mitochondrial PPase-2 is required for mitochondrial DNA maintenance and yeast cells lacking the enzyme exhibit mitochondrial DNA depletion. We sequenced the PPA2 gene in 13 patients with mitochondrial DNA depletion syndromes (MDS) of unknown cause to determine if mutations in the PPA2 gene of these patients were associated with this disease. No pathogenic mutations were identified in the PPA2 gene of these patients and we found no evidence that PPA2 gene mutations are a common cause of MDS in humans. D
Pathogenesis of primary defects in mitochondrial ATP synthesis
Seminars in Cell & Developmental Biology, 2001
Maternally inherited mutations in the mtDNA-encoded ATPase 6 subunit of complex V (ATP synthase) of the respiratory chain/oxidative phosphorylation system are responsible for a subgroup of severe and often-fatal disorders characterized predominantly by lesions in the brain, particularly in the striatum. These include NARP (neuropathy, ataxia, and retinitis pigmentosa), MILS (maternally inherited Leigh syndrome), and FBSN (familial bilateral striatal necrosis). Of the five known pathogenic mutations causing these disorders, four are located at two codons (156 and 217), each of which can suffer mutations converting a conserved leucine to either an arginine or a proline. Based on the accumulating data on both the structure of ATP synthase and the mechanism by which rotary catalysis couples proton flow to ATP synthesis, we propose a model that may help explain why mutations at codons 156 and 217 are pathogenic.
The Pathophysiology of Mitochondrial Biogenesis: Towards Four Decades of Mitochondrial DNA Research
Molecular Genetics and Metabolism, 2000
Mitochondria are with very few exceptions ubiquitous organelles in eukaryotic cells where they are essential for cell life and death. Mitochondria play a central role not only in a variety of metabolic pathways including the supply of the bulk of cellular ATP through oxidative phosphorylation (OXPHOS), but also in complex processes such as development, apoptosis, and aging. Mitochondria contain their own genome that is replicated and expressed within the organelle. It encodes 13 polypeptides all of them components of the OXPHOS system, and thus, the integrity of the mitochondrial DNA (mtDNA) is critical for cellular energy supply. In the past 12 years more than 50 point mutations and around 100 rearrangements in the mtDNA have been associated with human diseases. Also in recent years, several mutations in nuclear genes that encode structural or regulatory factors of the OXPHOS system or the mtDNA metabolism have been described. The development of increasingly powerful techniques and the use of cellular and animal models are opening new avenues in the study of mitochondrial medicine. The detailed molecular characterization of the effects produced by different mutations that cause mitochondrial cytopathies will be critical for designing rational therapeutic strategies for this group of devastating diseases.
Cardiac complications in inherited mitochondrial diseases
Heart Failure Reviews, 2020
Maternally mitochondrial dysfunction includes a heterogeneous group of genetic disorders which leads to the impairment of the final common pathway of energy metabolism. Coronary heart disease and coronary venous disease are two important clinical manifestations of mitochondrial dysfunction due to abnormality in the setting of underlying pathways. Mitochondrial dysfunction can lead to cardiomyopathy, which is involved in the onset of acute cardiac and pulmonary failure. Mitochondrial diseases present other cardiac manifestations such as left ventricular noncompaction and cardiac conduction disease. Different clinical findings from mitochondrial dysfunction originate from different mtDNA mutations, and this variety of clinical symptoms poses a diagnostic challenge for cardiologists. Heart transplantation may be a good treatment, but it is not always possible, and other complications of the disease, such as mitochondrial encephalopathy, lactic acidosis, and stroke-like syndrome, should be considered. To diagnose and treat most mitochondrial disorders, careful cardiac, neurological, and molecular studies are needed. In this study, we looked at molecular genetics of MIDs and cardiac manifestations in patients with mitochondrial dysfunction. Keywords Mitochondrial dysfunction. mtDNA. Cardiac. Atrioventricular Abbreviations ANT Adenine nucleotide translocator BSCL2 Berardinelli-Seip congenital lipodystrophy CMP Cardiomyopathy COX Cytochrome c oxidase ECMP Encephalocardiomyopathy MELAS Mitochondrial encephalopathy lactic acidosis and stroke-like episodes MERRF Myoclonus epilepsy red ragged fibers MID Mitochondrial dysfunction MRP Mitochondrial ribosomal protein MTO Mitochondrial tRNA translation optimization ND1 NADH-ubiquinone oxidoreductase chain 1 NDUFAF1 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex assembly factor 1 OXPHOS Oxidation-phosphorylation ROS Reactive oxygen species