Approximate Lateral Load Analysis by Portal Method (original) (raw)

Portal Frame Portal frames, used in several Civil Engineering structures like buildings, factories, bridges have the primary purpose of transferring horizontal loads applied at their tops to their foundations. Structural requirements usually necessitate the use of statically indeterminate layout for portal frames, and approximate solutions are often used in their analyses. (i) (ii) (iii) (iv) Portal Frame Structures Assumptions for the Approximate Solution In order to analyze a structure using the equations of statics only, the number of independent force components must be equal to the number of independent equations of statics. If there are n more independent force components in the structure than there are independent equations of statics, the structure is statically indeterminate to the n th degree. Therefore to obtain an approximate solution of the structure based on statics only, it will be necessary to make n additional independent assumptions. A solution based on statics will not be possible by making fewer than n assumptions, while more than n assumptions will not in general be consistent. Thus, the first step in the approximate analysis of structures is to find its degree of statical indeterminacy (dosi) and then to make appropriate number of assumptions. For example, the dosi of portal frames shown in (i), (ii), (iii) and (iv) are 1, 3, 2 and 1 respectively. Based on the type of frame, the following assumptions can be made for portal structures with a vertical axis of symmetry that are loaded horizontally at the top 1. The horizontal support reactions are equal 2. There is a point of inflection at the center of the unsupported height of each fixed based column Assumption 1 is used if dosi is an odd number (i.e., = 1 or 3) and Assumption 2 is used if dosi 1. Some additional assumptions can be made in order to solve the structure approximately for different loading and support conditions. 3. Horizontal body forces not applied at the top of a column can be divided into two forces (i.e., applied at the top and bottom of the column) based on simple supports 4. For hinged and fixed supports, the horizontal reactions for fixed supports can be assumed to be four times the horizontal reactions for hinged supports