Is the sheet-flow design a ‘frozen core’ (a Bauplan) of the gas exchangers? (original) (raw)
Abstract
AI
This review explores the concept of the 'sheet-flow' design as a structural feature in evolved gas exchangers, proposing it as a foundational architectural principle for gas exchange via diffusion. It argues that this design ensures close approximation of internal and external respiratory media across extensive surfaces, while also highlighting the intricate relationship between structure and function in biological adaptations. The paper emphasizes the evolutionary persistence of such designs in various organisms, attributing their success to a combination of morphological efficiency and structural resilience, thereby illustrating the constraints and trade-offs inherent to respiratory system evolution.
Key takeaways
AI
- The sheet-flow design is a fundamental architectural feature of respiratory gas exchangers.
- The gas exchange efficiency is influenced by the unique geometric arrangement of pulmonary microvascular systems.
- Pulmonary capillary blood pressure in humans averages 1.1 kPa, highlighting low-pressure adaptations.
- Birds possess the most efficient respiratory systems with a fractal dimension of 3 in their microvascular units.
- Fractal geometry optimizes biological designs, allowing efficient gas exchange with minimal structural material.

Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (171)
- Abdalla, M.A., King, A.S., 1975. The functional anatomy of the pulmonary circulation of the do- mestic fowl. Respir. Physiol. 23, 267-290.
- Assimacopoulos, A., Guggenheim, R., Kapanci, Y., 1976. Changes in alveolar capillary configuration at different levels of lung inflation in the rat. Lab. Invest. 34, 10-22.
- Bassingthwaighte, J.B., Liebovitch, L.S., West, B.J., 1994. Fractal Physiology. Oxford University Press, New York.
- Barman, S.A., McCloud, L.L., Catravas, J.D., Ehrhart, I.C., 1996. Measurement ofpulmonary blood flow by fractal analysis of flow heterogeneity in isolated canine lungs. J. Appl. Physiol. 81, 2039-2045.
- Bates, J.H.T., 1993. Stochastic model of the pulmonary airway tree and its implications for bronchial re- sponsiveness. J. Appl. Physiol. 75, 2493-2499.
- Bettex-Galland, M., Hughes, G.M., 1973. Contractile filamentous material in the pillar cells of fish gills. J. Cell Sci. 13, 359 -366.
- Birks, E.K., Mathieu-Costello, O., Fu, Z., Tyler, W.S., West, J.B., 1997. Very high pressures are required to cause stress failure of pulmonary capillaries in thoroughbred racehorses. J. Appl. Physiol. 82, 1584 -1592.
- Booth, J.H., 1978. The distribution of blood flow in the gills of fish: application of a new technique to rainbow trout (Salmo gairdneri ). J. Exp. Biol. 73, 119 -129.
- Bourne, G.B., Redmond, J.R., 1977. Hemodynamics in the pink albarone, Haliotis corrugata. I. Pressure relations and pressure gradients in intact animals. J. Exp. Zool. 200, 9 -16.
- Briggs, J. 1992. Fractals: The Pattern of Chaos. Simon and Schuster, New York.
- Bshouty, Z., Younes, M., 1990. Distensibility and pres- sure-flow relationship of the pulmonary circulation. II. Multibranched model. J. Appl. Physiol. 68, 1514 -1527.
- Burri, P.H., 1984. Foetal and postnatal development of the lung. Ann. Rev. Physiol. 46, 617 -628.
- Burri, P.H., 1985. Morphology and respiratory func- tion of the alveolar unit. Int. Archs. Allergy Appl. Immun. 76, 2 -12.
- Burri, P.H., Tarek, M.R., 1990. A novel mechanism of capillary growth in the rat pulmonary microvascual- ture. Anat. Rec. 228, 35 -45.
- Caduff, J.H., Fischer, L.C., Burri, P.H., 1986. Scanning electron microscope study of the developing mi- crovasculature in the postnatal lung. Anat. Rec. 216, 154 -164.
- Chaetum, E.P., 1934. Limnological investigations on respiration, annual migratory cycle and other re- lated phenomena in fresh water pulmonate snails. Trans. Am. Microsc. Soc. 53, 348 -407.
- Cameron, J.N., Mecklenburg, T.A., 1973. Aerial gas exchange in the coconut crab, Birgus latro, with some notes on Gecarcoidea lalandii. Respir. Physiol. 19, 245 -26124.
- Carlson, C.W., 1960. Aortic rupture. Turkey Producer: January Issue, pp. 1 -8.
- Caro, C.G, Saffman, P.G., 1965. Extensibility of blood vessels in isolated rabbit lungs. J. Physiol. Lond. 178, 193 -210.
- Caruthers, S.D., Harris, T.R., 1994. Effects of pul- monary blood flow on the fractal nature of flow heterogeneity in sheep lungs. J. Appl. Physiol. 77, 1474 -1479.
- Comroe, J.H., 1974. Physiology of Respiration: An Introductory Text. Year Book Medical Publishers, Chicago.
- Copeland, D.E., Fitzjarrel, A.T., 1968. The salt ab- sorbing cells in the gills of the blue crab (Callinectes- sapidus, Rathburn) with notes on modified mito- chondria. Z. Zellforsch. Mikrosk. Anat. 92, 1-22.
- Czopek, J., 1965. Quantitative studies of the morphol- ogy of respiratory surfaces in amphibians. Acta Anat. 62, 296-323.
- Dock, D.S., Kraus, W.L., McGuire, L.B., Hyland, J.W., Haynes, F.W., Dexter, L., 1961. The pul- monary blood volume in man. J. Clin. Invest. 40, 317-328.
- Drach, P., 1930. Etude sur le systeme ´brachiale des crustaces Decapodes. Archs. Anat. Microsc. 26, 83- 133.
- Duncker, H.-R., 1978. General morphological princi- ples of amniotic lungs. In: Piiper, J. (Ed.), Respira- tory Function in Birds, Adult and Embryonic. Springer-Verlag, Berlin, pp. 1-15.
- Duncker, H.R., Guntert, M., 1985. The quantitative design of the avian respiratory system: from hum- mingbird to the mute swan. In: Nachtigall, W. (Ed.), BIONA report No. 3. Gustav-Fischer Verlag, Stuttgart, pp. 361-378.
- Dunel-Erb, S., Massabau, J.C., Laurent, P., 1982. Or- ganisation fonctionelle de la brachie d'E ´crevisse. C. R. Se ´ances Soc. Biol. 176, 248-258.
- Farrell, A.P., 1993. Cardiovascular system. In: Evans, D.H. (Ed.), The Physiology of Fishes. CRC Press, Boca Raton, pp. 219-250.
- Farrell, A.P., Daxboeck, C., Randall, D.J., 1979. The effect of input pressure and flow on the pattern and resistance to flow in isolated perfused gills. J. Comp. Physiol. 133, 233-248.
- Farrell, A.P., Sobin, S.S., Randall, D.J., Crosby, S., 1980. Sheet blood flow in the secondary lamellae of teleost gills. Am. J. Physiol. 239, R428-R436.
- Farrelly, C.A., Greenaway, P., 1987. The morphology of the vasculature of the lungs and the gills of the soldier crab, Mictyris longicarpus. J. Morphol. 193, 285-304.
- Flemister, S.C., 1959. Histopathology of gill and kidney of crab Ocypode albicans. Biol. Bull. Mar. Biol. Lab., Woods Hole 116, 37-48.
- Foster, C.A., Howse, H.D., 1978. A morphological study of gills of brown shrimp, Panaeus aztecus. Tissue Cell 10, 77-92.
- Fung, Y.C., 1973. Stochastic flow in capillary blood vessels. Microvasc. Res. 5, 34-48.
- Fung, Y.C., Sobin, S.S., 1969. Theory of sheet flow in lung alveoli. J. Appl. Physiol. 26, 472-488.
- Fung, Y.C., Sobin, S.S., 1972a. Elasticity of the pul- monary alveolar sheet. Circ. Res. 30, 451-469.
- Fung, Y.C., Sobin, S.S., 1972b. Pulmonary alveolar blood flow. Circ. Res. 30, 470-490.
- Fung, Y.C., Sobin, S.S., 1977. Pulmonary alveolar blood flow. In: West, J.B. (Ed.), Bioengineering Aspects of the Lung. Dekker, New York, pp. 267- 359.
- Gaehtgens, P., 1980. Blood flow through narrow capil- laries: rheological mechanisms determining capillary hematocrit and apparent viscosity. Biorheology 19, 183 -189.
- Gehr, P., Bachofen, M., Weibel, E.R., 1978. The nor- mal human lung: ultrastructure and morphometric estimation of diffusion capacity. Respir. Physiol. 32, 121 -140.
- Glenny, R.W., Robertson, H.T., 1991. Fractal model- ing of pulmonary blood flow heterogeneity. J. Appl. Physiol. 70, 1024 -1030.
- Glenny, R.W., Robertson, H.T., Yamashiro, S., Bass- ingthwaighte, J.B., 1991. Applications of fractal analysis to physiology. J. Appl. Physiol. 70, 2351 - 2367.
- Goldberger, A.L., 1991. Is the normal heart beat chaotic or homeostatic? News Physiol. Sci. 6, 87 - 91.
- Goldberger, A.L., Rigney, D.R., West, B.J., 1990. Chaos and fractal in human physiology. Sci. Amer. 262, 34 -41.
- Goldberger, A.L., West, B.J., 1987. Fractals in Physiol- ogy and Medicine. Yale J. Biol. Med. 60, 421 -435.
- Guntheroth, W.G., Lutchel, D.L., Kawabori, I., 1982. Pulmonary microcirculation: tubules rather than sheet and post. J. Appl. Physiol. 53, 510 -515.
- Haefeli-Bleuer, B, Weibel, E.R., 1988. Morphometry of the human pulmonary acinus. Anat. Rec. 220, 401 - 414.
- Hainsworth, R., 1986. Vascualr capacitance: its control and importance. Rev. Physiol. Biochem. Pharmacol. 105, 101 -173.
- Hamlin, R.L., Kondrich, R.M., 1969. Hypertension, regulation of heart rate, and possible mechanism contributing to aortic rupture in turkeys. Proc. Fed. Am. Soc. Exp. Biol. 28, 451 -456.
- Hayes, B., 1994. Nature's algorithms. Amer. Sci. 82, 206 -210.
- Hijiya, K., Okada, Y., 1978. Scanning elactron mi- croscopy of the pulmonary capillary vessels in the rat. J. Electron Microsc. 1, 49 -53.
- Horsfield, K., 1990. Diameters, generations and orders of branches in the bronchial tree. J. Appl. Physiol. 68, 457 -461.
- Huang, W., Ten, R.T., McLaurie, M., Bledsoe, G., 1996. Morphometry of the human pulmonary vas- culature. J. Appl. Physiol. 81, 2123 -2133.
- Hughes, G.M., 1972. Morphometrics of the fish gills. Respir. Physiol. 14, 1 -25.
- Hughes, G.M., 1976. Fish respiratory physiology. In: Spencer-Davies, P. (Ed.), Perspectives in Environ- mental Biology. Pergamon, Oxford, pp. 235 -245.
- Hughes, G.M., 1984. General Anatomy of the Gills. In: Randall, D.J. (Ed.), Fish Physiology, Vol XA. Aca- demic Press, London, pp. 1 -72.
- Hughes, G.M., Kikuchi, Y., 1984. Effects of in vivo and in vitro changes in PO 2 on the deformability of erythrocytes of rainbow trout (Salmo gairdneri ). J. Exp. Biol. 111, 253 -257.
- Hughes, G.M., Kikuchi, Y., Watari, H., 1982. A study of the deformability of erythrocytes of a teleost fish, the yellow tail (Seriola quinqueradiata) and a com- parison with human erythrocytes. J. Exp. Biol. 96, 209-220.
- Hughes, G.M., Morgan, M., 1973. The structure of the gills in relation to their respiratory function. Biol. Rev. 48, 419-475.
- Johnson, P.T., 1980. Histology of the Blue Crab, Callinectes sapidus: Model for Decapoda. Praeger, New York.
- Jones, D.R., Randall, D.J., 1978. The respiratory and circulatory systems during exercise in fish. In: Hoar, W.S., Randall, D.J. (Eds.), Fish Physiology, vol. 7. Academic Press, New York, pp. 425-503.
- Kapanci, Y., Assimacopoulos, A., Irle, C., Zwahlen, A., Gabbiani, G., 1974. Contractile interstitial cells in pulmonary alveolar septa: a possible regulator of ventilation/perfusion ratio? Ultrastructural fluores- cence and in vivo studies. J. Cell Biol. 60, 375-392.
- Kardong, K.V., 1972. Morphology of the respiratory system and its musculature in diffrerent snake gen- era (part I), Crotalus and Elaphe. Gegenbaurs Mor- phol. Jahrb. 117, 285-302.
- Kawasaki, M., 1993. Independently evolved jamming avoidance responses employ identical computa- tional algorithms: a behavioural study of the African electric fish, Gymnarchus niloticus. J. Comp. Physiol. 173A, 9-22.
- Kempton, R.T., 1969. Morphological features of func- tional significance in the gills of the spiny dogfish, Squalus acanthias. Biol. Bull. 136, 226-240.
- Keys, A., Bateman, J.B., 1932. Branchial responses to adrenaline and pitressin in the eel. Biol. Bull. 63, 327-336.
- Knight, J., Knight, R., 1986. The blood vascular system of the gills of Pholas dactylus L. (Mollusca, Bivalvia, Eulamellibranchia). Phil. Trans. Roy. Soc. B 313, 509-523.
- Ko ¨nig, M.F., Lucocq, J.M., Weibel, E.R., 1993. Demonstration of pulmonary vascular perfusion by electron and light microscopy. J. Appl. Physiol. 75, 1877-1883.
- Krenz, G.S., Linehan, J.H., Dawson, C.A., 1992. A fractal continuum model of the pulmonary arterial tree. J. Appl. Physiol. 72, 2225-2237.
- Laurent, P., 1984. Gill internal morphology. In: Hoar, W.S., Randall, D.J. (Eds.), Fish Physiology, vol. 10A. Academic Press, New York, pp. 73-183.
- Laurent, P., Dunel-Erb, S., 1980. Morphology of gill epithelia in fish. Am. J. Physiol. 238, R147-R159.
- Laurent, P., Maina, J.N., Bergman, H.L., et al., 1995. Gill structure of a fish from an alkaline lake: effect of short-term exposure to neutral conditions. Can. J. Zool. 73, 1170 -1181.
- Lefevre, J., 1983. Teleonomical optimization of a frac- tal model of the pulmonary arterial bed. J. Theor. Biol. 102, 225 -248.
- Maarek, J.M.I., Chang, H.K., 1991. Pulsatile pul- monary microvascular pressure measured with vas- cular occlusion techniques. J. Appl. Physiol. 70, 998 -1005.
- Maarek, J.M.I., Grimbert, F., 1994. Segmental pul- monary vascular resistances during oleic acid lung injury in rabbits. Respir. Physiol. 98, 179 -191.
- Macklem, P.T., Bouverot, P., Scheid, P., 1979. Mea- surement of the distensibility of the parabronchi in duck lungs. Respir. Physiol. 38, 23 -35.
- Maeda, N., Shiga, T., 1994. Velocity of oxygen transfer and erythrocyte rheology. News Physiol. Sci. 9, 22 -27.
- Maina, J.N., 1982. A scanning electron microscopic study of the air and blood capillaries of the lung of the domestic fowl (Gallus domesticus). Experientia 35, 614 -616.
- Maina, J.N., 1988. Scanning electron microscopic study of the spatial organization of the air-and blood conducting components of the avian lung. Anat. Rec. 222, 145 -153.
- Maina, J.N., 1989a. The morphology of the lung of a tropical terrestrial slug, Trichotoxon copleyi (Mol- lusca: Gastropoda; Pulmonata): A scanning and transmission electron microscopic study., J. Zool. Lond. 217, 335 -366.
- Maina, J.N., 1989b. The morphology of the lung of the East African tree frog Chiromantis petersi with ob- servations on the skin and the buccal cavity as secondary gas exchange organs: a TEM and SEM study. J. Anat. 165, 29 -43.
- Maina, J.N., 1989c. The morphology of the lung of the black mamba Dendroaspis polylepis (Reptiia: Ophidia: Elapidae): a scanning and transmission electron microscopic study. J. Anat. 167, 31 -46.
- Maina, J.N., 1989d. Morphometrics of the avian lung. In: King, A.S., McLelland, J. (Eds.), Form and Function in Birds, vol. 4. Academic Press, London, pp. 307 -368.
- Maina, J.N., 1990. The morphology of the gills of the African fresh water crab Potamon niloticus (Ort- mann-Crustacea-Brachyura-Potamonidae): A scan- ning and transmission electron microscopic study. J. Zool. Lond. 221, 499 -515.
- Maina, J.N., 1994. Comparative pulmonary morphol- ogy and morphometry: The functional design of respiratory systems. In: Gilles, R. (Ed.), Advances in Comparative and Environmental Physiology, vol.
- Maina, J.N., 1998a. The Gas Exchangers: Structure, Function, and Evolution of the Respiratory Pro- cesses. Springer-Verlag, Berlin.
- Maina, J.N., 1998b. The lungs of the volant verte- brates-birds and bats: How are they relatively structurally optimized for this elite mode of locomo- tion? In: Weibel, E.R., Taylor, C.R., Bolis, L. (Eds.), Principles of Animal Design: The Optimiza- tion and Symmorphosis Debate. Cambridge Univer- sity, Cambridge, pp. 177-185.
- Maina, J.N., 2000. Comparative respiratory morphol- ogy: themes and principles in the design and con- struction of the gas exchangers. Anat. Rec. (New Anat) 261, 25-44.
- Maina, J.N., King, A.S., Settle, G., 1989. An allometric study of the pulmonary morphometric parameters in birds, with mammalian comparison. Phil. Trans. R. Soc. Lond. 326B, 1-57.
- Maina, J.N., Kisia, S.M., Wood, C.M., et al., 1996. A comparative allometric study of the morphometry of the gills of an alkalinity adapted cichlid fish, Oreochromis alcalicus grahami, of Lake Magadi, Kenya. Int. J. Salt Lake Res. 5, Maina, J.N., Maloiy, G.M.O., 1986. The morphology of the respiratory organs of the African air-breath- ing catfish (Clarias mossambicus): A light, and elec- tron microscopic study, with morphometric observations. J. Zool. Lond. 209, 421-445.
- Maina, J.N., Maloiy, G.M.O., 1988. A scanning and transmission electron microscopic study of the lung of a caecilian Boulengerula taitanus. J. Zool. Lond. 215, 739-751.
- Maina, J.N., Veltcamp, C.J., Henry, J., 1999. A study of the spatial organizationof the gas-exchange com- ponents of a snake lung-the sandboa Eryx colu- brinus (Reptilia: Ophidia; Corubridae) by latex casting. J. Zool. Lond. 247, 81-90.
- Mandelbrot, B.B., 1977. Form, Chance, and Dimen- sion. Freeman, New York.
- Mandelbrot, B.B., 1983. The Fractal Geometry of Na- ture. Freeman, New York.
- Mangum, C.P., 1982. The functions of gills in several groups of invertebrate animals. In: Houlihan, D.F., Rankin, J.C., Shuttleworth, T.J. (Eds.), Gills. Cam- bridge University Press, Cambridge, pp. 77-97.
- Mathieu-Costello, O., Szewczak, J.M., Logemann, R.B., Agey, P.J., 1992. Geometry of blood-tissue exchange in bat flight muscle compared with bat hindlimb and rat soleus muscle. Am. J. Physiol. 262, R955-R965.
- McDonald, D.G., Caudek, V., Ellis, R., 1991. Gill design in fresh water fishes:interrelationships among gas exchange, ion regulation, and acid base regula- tion. Physiol. Zool. 64, 103-123.
- Miller, W.S., 1937. The Lung. Thomas Springfield, Illinois.
- Milner, W.R., 1980. Pulmonary circulation. In: Mount- castle, V.B. (Ed.), Medical Physiology, vol. 2. Mosby, Louis, pp. 1108 -1117.
- Milnor, W.R., 1982. Hemodynamics. Williams and Williams, Baltimore, M.D.
- Morse, H.C., Harris, P.J., Dornfeld, E.J., 1970. Pacifastacus leniusculus: fine structure of arthro- branch with reference to active ion uptake. Trans. Am. Microsc. Soc. 89, 12 -27.
- Nakao, T., 1974. The fine structure and innervation of gill lamellae in Anodonta. Cell Tissue Res. 157, 239 -254.
- Nelson, T.R., Manchester, D.K., 1988. Modeling of lung morphogenesis using fractal geometries. I.E.E.E. Trans. Med. Imaging 7, 321 -327.
- Nelson, T.R., West, B.J., Goldberger, A.L., 1990. The fractal lung: universal and species related scaling patterns. Experientia 46, 251 -254.
- Nilsson, S., 1986. Control of gill blood flow. In: Nilsson, S., Holmgren, S. (Eds.), Fish Physiology. Croom Helm, Dover, N.H., pp. 86 -101.
- Nilsson, G.E., Lo ¨fman, C.O., Block, M., 1995. Exten- sive erythrocyte deformation in fish gills observed by in vivo microscopy: apparent adaptations for enhancing oxygen uptake. J. Exp. Biol. 198, 1151 - 1156.
- Nonnenmacher, T.F., 1989. Fractal scaling mechanisms in biomembranes: oscillations in the lateral diffu- sion coefficient. Eur. Biophys. J. 16, 375 -379.
- Olson, K.H., 1979. The linear cable theory as a model of gill blood flow. J. Theor. Biol. 81, 377 -388.
- Olson, K.H., 1991. Vasculature of the fish gill: anatom- ical correlates of physiological functions. J. Electron Microsc. Res. 19, 389 -405.
- Okada, O., Presson, R.G., Kirk, K.R., et al., 1992. Capillary perfusion patterns in single alveolar walls. J. Appl. Physiol. 72, 1838 -1844.
- O 8 stlund, E., Fa ¨nge, R., 1962. Vasodilation by adrenaline and noradrenaline and the effects of some other substances on perfused fish gills. Comp. Biochem. Physiol. 97, 292 -303.
- Patan, S., Alvarez, M.J., Schittny, J.C., Burri, P.H., 1992. Intussusceptive microvascular growth: A com- mon alternative to capillary sprouting. Arch. Histol. 55, 65 -75.
- Pennycuick, C.J., 1992. Newtonian Rules in Biology. Oxford University Press, New York.
- Perry, S.F., 1983. Reptilian lungs: Functional anatomy and evolution. Adv. Anat. Embryol. Cell Biol. 79, 1 -81.
- Perry, S.F., 1989. Mainstreams in the evolution of vertebrate respiratory structures. In: King, A.S., McLelland, J. (Eds.), Form and Function in Birds, vol. 4. Academic Press, London, pp. 1 -67.
- Piiper, J., Gatz, R.N., Crawford, E.C., 1976. Gas trans- port characteristics in an exclusively skin breathing salamander, Desmognathus fuscus Plethodontidae). In: Hughes, G.M. (Ed.), Respiration in Amphibious Vertebrates. Academic Press, London, pp. 339-356.
- Pump, K.K., 1966. The circulation in the peripheral parts of the human lung. Dis. Chest 49, 119-129.
- Ragan, D.M.S., Schmidt, I.C., MacDonald, I.C., Groom, A.C., 1988. Spontaneous cyclic contrac- tions of the capillary wall in vivo impeding red cell flow: A quantitative analysis. Microvasc. Res. 36, 13-30.
- Randall, D.J., 1982. The control of respiration and circulation in fish during exercise and hypoxia. J. Exp. Biol. 100, 275 -288.
- Rendas, A., Branthwaite, M., Reid, L., 1978. Growth of pulmonary circualtion in normal pig. Structural analysis and cardiopulmonary function. J. Appl. Physiol. 45, 806-817.
- Rossitti, S., Stephensen, H., 1994. Temporal hetergene- ity of the blood flow velocity at the middle cerebral artery in the normal human characterized by fractal analysis. Acta Physiol. Scand. 1511, 191-198.
- Roughton, F.J.W., Forster, R.E., 1957. Relative impor- tance of diffusion and chemical reaction rates in determining rate of O 2 exchange of pulmonary membrane and volume of blood in lung capillaries. J. Appl. Physiol. 11, 290-302.
- Ryan, S.F., 1969. The structure of the interalveolar septum of the mammalian lung. Anat. Rec. 165, 467-484.
- Scheid, P., Piiper, J., 1970. Analysis of gas exchange in the avian lung: theory and experiments in the do- mestic fowl. Respir. Physiol. 9, 246-262.
- Scheid, P., Piiper, J., 1972. Cross-current gas exchange in the avian lungs: effects of reversed parabronchial air flow in ducks. Respir. Physiol. 16, 304-312.
- Scheid, P., Piiper, J., 1976. Quantitative functional analysis of branchial gas transfer: theory and appli- cation to Scyliorhinus stellaris (Elasmobranchii). In: Hughes, G.M. (Ed.), Respiration of Amphibious Vertebrates. Academic Press, New York, pp. 17-38.
- Schraufnagel, D.E., 1987. Microvascular corrosion casting of the lung. A state-of-the-art review. Scan. Microsc. 1, 1733-1747.
- Schraufnagel, D.E., Mehta, D., Harshbarger, R., Trevi- ranus, K., Wand, N.S., 1986. Capillary remodelling in bleomycin-induced pulmonary fibrosis. Am. J. Pathol. 125, 97-106.
- Sinha, A.K., Gleed, R.D., Hakim, T.S., Dobson, A., Shannon, J., 1996. Pulmonary capillary pressure during exercise in horses. J. Appl.Physiol. 80, 1792- 1798.
- Sobin, S.S., 1965. The vascular injection method and the functional geometry of the microcircualtion. Invest. Ophthalmol. 4, 1105-1110.
- Sobin, S.S., Tremer, H.M., Fung, Y.C., 1970. Morpho- metric basis of of the sheet-flow concept of the pulmonary alveolar microcirculation in the cat. Circ. Res. 26, 397 -414.
- Sobin, S.S., Tremer, H.M., Fung, Y.C., 1972. Elasticity of the pulmonary alveolar microvascular sheet in the cat. Circ. Res. 30, 440 -490.
- Sobin, S.S., Fung, Y.C., Tremer, H.M., Lindal, R.G., 1979. Distensibility of human pulmonary capillary blood vessels in the interalveolar septa. Microvasc. Res. 17, S87.
- Speckmann, E.W., Ringer, R.K., 1963. The cardiac output and carotid and tibial blood pressure of the turkey. Can. J. Biochem. Physiol. 41, 2337 -2354.
- Steen, J.B., Kruysse, A., 1964. The respiratory function of teleostan gills. Comp.Biochem. Physiol. 12, 127 - 142.
- Sundin, L., Nilsson, G.E., Block, M., Lo ¨fman, C.O., 1995. Control of gill filament flow by serotonin in the rainbow trout, Oncorhynchus mykiss. Am. J. Physiol. 268, R1224 -R1229.
- Taylor, C.R., Karas, R.H., Weibel, E.R., Hoppeler, H., 1987. Adaptive variation in the mammalian respira- tory system in relation to energetic demand: II. Reaching limits to oxygen flow. Respir. Physiol. 69, 7 -26.
- Taylor, H.H., 1990. Pressure-flow characteristics of crab gills: implications for regulation of hemolymph pressure. Physiol. Zool. 63, 72 -89.
- Taylor, H.H., Taylor, E.W., 1992. Gills and lungs: the exchage of gases and ions. In: Harrison, F.W., Humes, A.G. (Eds.), Microscopic Anatomy of In- vertebrates, vol. 10. Wiley-Liss, New York, pp. 203 -293.
- Tsonis, A.A., Tsonis, P.A., 1987. Fractals: a new look biological shape and patterning. Perspect. Biol. Med. 30, 355 -361.
- Voss, R.F., 1988. Fractals in nature: from characteriza- tion to simulation. In: Petgen, H.O., Saupe, D. (Eds.), The Science of Fractal Images. Springer-Ver- lag, New York, pp. 21 -770.
- Wagner, G., 1998. Complexity matters. Science 279, 1158 -1159.
- Wagner, G.P., 1989. The origin of morphological char- acters and the biological basis of homology. Evolu- tion 43, 1157 -1171.
- Weibel, E.R., 1963. Morphometry of the Human Lung. Springer-Verlag, Berlin.
- Weibel, E.R., 1970. Morphometric estimation of of pulmonary diffusion capacity. I. Model and method. Respir. Physiol. 11, 54 -75.
- Weibel, E.R. 1984. The Pathways for Oxygen. Harvard University Press, Harvard, M.A.
- Weibel, E.R., 1991. Fractal geometry: a design principle for living organisms. Am. J. Physiol. 261, L361 - L369.
- Weibel, E.R., 1994. Design of biological organisms and fractal geometry. In: Nonnenmacher, T., Losa, G.A., Weibel, E.R. (Eds.), Fractals in Biology and Medicine. Birkha ¨hauser, Basel, pp. 68-85.
- Weibel, E.R., 1996. The structural basis of lung func- tion. In: West, J.B. (Ed.), Respiratory Physiology: People and Ideas. Oxford University Press, New York, pp. 3-46.
- Weibel, E.R., Gomez, D.M., 1962. Architecture of the human lung. Science 137, 577-585.
- West, B.J., 1985. An Essay on the Importance of being Nonlinear-Lecture notes in Biomaterials, 62. Springer-Verlag, Berlin.
- West, B.J., 1987. Fractals, intermittency and morpho- genesis. In: Degn, H., Holden, A.V., Olsen, L.F. (Eds.), Chaos in Biological Systems. Plenum Press, New York, pp. 305-314.
- West, B.J., 1990. Fractal Physiology and Chaos in Medicine. World Scientific Publishers, Singapore.
- West, B.J., Bhargava, V., Goldberger, A.L., 1986. Be- yond the principle of similitude in the bronchial tree. J. Appl. Physiol. 60, 1089-1097.
- West, B.J., Brown, J.H., Enquist, B.J., 1997. A general model for the origin of allometric scaling laws in biology. Science 276, 122-126.
- West, B.J., Brown, J.H., Enquist, B.J., 1999. The fourth dimension of life: Fractal geometry and allometric scaling of organisms. Science 284, 1677-1679.
- West, B.J., Goldberger, A.L., 1987. Physiology in frac- tal dimensions. Amer. Sci. 75, 354-365.
- West, J.B., 1974. Respiratory Physiology: The Essen- tials. Williams and Wilkins, Baltimore.
- West, J.B., Dollery, C.T., Naimark, A., 1964. Distribu- tion of blood in isolated lung: relation to vascular and alveolar pressures. J. Appl. Physiol. 19, 713- 724.
- West, J.B., Jones, N.L., 1965. Effects of changes in topographical distribution of lung blood flow on gas exchange. J. Appl. Physiol. 20, 825-835.
- West, J.B., Mathews, F.L., 1978. Stresses, strains, and surface pressures in the lung caused by its weight. J. Appl. Physiol. 32, 332 -345.
- West, J.B., Mathieu-Costello, O., Jones, J.H., et al., 1993. Stress failure in pulmonary capillaries in race horses with excercise induced pulmonary haemor- rhage. J. Appl. Physiol. 75, 1097 -1109.
- Wiener, F., Morkin, E., Skalak, R., Fishman, P., 1966. Wave propagation in the pulmonary circulation. Circ. Res. 19, 834 -850.
- Wood, C.M., 1974. A critical examination of the phys- ical and adrenergic factors affecting blood flow through the gills of the rainbow trout. J. Exp. Biol. 60, 241 -512.
- Wood, C.M., 1976. Pharmacological properties of the adrenergic receptors regulating systemic vascular resistance in the rainbow trout. J. Comp. Physiol. 107, 211 -228.
- Yen, M.R.T., 1989. Elastic properties of pulmonary blood vessels. In: Chang, H.K., Paiva, M. (Eds.), Respiratory Physiology: An Analytical Approach. Marcel Dekker, New York, pp. 533 -559.
- Yonge, C.M., 1952. The mantle cavity in Siphonaria alternata Say. Proc. Malacol. Soc. Lond. 29, 190 - 199.
- Youlson, J.H., Freeman, P.A., 1976. Morphology of the gills of larval and parasitic adult sea lamprey, Petromyzon marinus L. J. Morph. 149, 73 -104.
- Zeltner, T.B., Burri, P.H., 1987. The postnatal develop- ment and growth of the human lung. II. Morphol- ogy. Respir. Physiol. 67, 269 -282.
- Zeltner, T.B., Caduff, J.H., Gehr, P., Pfenninger, J., Burri, P.H., 1987. The postnatal development and growth of the human lung: I. Morphometry. Respir. Physiol. 567, 247 -267.
FAQs
AI
What defines the 'frozen core' concept in respiratory organ evolution?add
The paper describes the 'frozen core' as immutable anatomical features that persist across animal lineages, emphasizing traits essential for survival amidst varying evolutionary pressures.
How does the sheet-flow design facilitate gas exchange efficiency?add
The study reveals that the sheet-flow design allows extensive surface area for gas exchange, with a tissue barrier thickness of just 0.5 mm in human lungs.
What role does fractal geometry play in respiratory microvascular systems?add
The research identifies that fractal properties of vascular networks enable extensive internal surface area for ventilation and low-energy perfusion, with avian lungs achieving a fractal dimension of 3.
How do hemodynamic pressures affect pulmonary capillary structures?add
The review indicates that the variable pulmonary capillary transmural pressures can compress or open blood vessels, influencing perfusion dynamics and maintaining structural integrity during respiratory cycles.
What are the implications of microvascular design in different gas exchangers?add
The findings suggest that common microvascular architectures across species, such as fish gills and mammalian lungs, underline evolutionary advantages in gas exchange functionality.