451 Cumulative drug toxicity experience of ARQ 197, a selective c-Met inhibitor, and its correlation with pharmacokinetic (PK) and pharmacogenomic (PG) parameters (original) (raw)
Related papers
Free Radical Biology and Medicine, 2010
Geldanamycin (GM), a benzoquinone ansamycin antibiotic, is a natural product inhibitor of Hsp90 with potent and broad anti-cancer properties. Because of its adverse effects on liver, its less toxic derivatives 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) and 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG) are currently being evaluated for the treatment of cancer. Previously, it has been demonstrated that the redox cycling of GM by NADPH-cytochrome P450 reductase leads to the formation of the GM semiquinone and superoxide radicals, the latter being identified using spin-trapping. We hypothesized that the different hepatotoxicity induced by GM, 17-AAG and 17-DMAG reflects the redox active properties of the quinone moiety and possibly the extent of superoxide formation, which may stimulate cellular oxidative injury. Our data demonstrate that superoxide can be efficiently trapped during the reduction of GM, 17-AAG and 17-DMAG by NADPH-cytochrome P450 reductase, and that superoxide formation rate followed the order 17-DMAG N 17-AAG N GM. In the absence of superoxide scavengers, the rate of NADPH oxidation followed the order 17-DMAG N GM N 17-AAG. The half-wave one-electron reduction potentials (E 1/2) of GM, 17-AAG and 17-DMAG in DMSO have been determined to be-0.37,-0.13 and-0.015 V (vs. Ag/AgCl), respectively. If the same order of E 1/2 follows in neutral aqueous media, thermodynamic considerations imply that 17-DMAG is more readily reduced by the P450 reductase as well as by superoxide. The order of the drug cytotoxicity toward rat primary hepatocytes, as determined by their effect on cell viability and on intracellular oxidant level, was opposite to the order of E 1/2 of the respective quinone/semiquinone couples. These results suggest that hepatotoxicity exhibited by the Hsp90 inhibitors belonging to benzoquinone ansamycins could be attributed to superoxide. The apparent discrepancy between the order of toxicity and the orders of superoxide formation rate, which is correlated with E 1/2 , is discussed. Published by Elsevier Inc.
Archives of Biochemistry and Biophysics, 2005
Famoxadone (FAM) is a newly commercialized antibiotic for use against plant pathogenic fungi. It inhibits mitochondria ubiquinol:cytochrome c oxidoreductase (EC 1.10.2.2, bc 1 complex) function by binding to the proximal niche of the quinol oxidation site on the enzyme. FAM has effects on the enzyme characteristic of both type Ia (E-b-methoxyacrylates) and type Ic (stigmatellin) inhibitors. Steady-state and tight-binding inhibition kinetics; as well as direct binding measurements with famoxadone (FAM) and methoxyacrylate stilbene (MOAS), indicated that FAM is a non-competitive inhibitor of the enzyme while methoxyacrylate stilbene (MOAS) is better described as a mixed-competitive inhibitor with respect to substrate. Mixed-competitive and non-competitive inhibition kinetics predicts a ternary enzyme-substrate-inhibitor (ESI) intermediate in the reaction sequence. Current views of the Qo domain architecture propose substrate binding niches in both distal and proximal regions of the domain. Since both inhibitors bind within the proximal niche, the formation of an ESI complex implicates substrate binding within the distal niche near the iron-sulfur protein (ISP) and cytochrome c 1 (C1). In the presence of saturating FAM, addition of substrate led to a slow, nearly stoichiometric reduction of C1 that was enzyme dependent, and independent of O À 2 production. Similar experiments with saturating MOAS led to a slow, sub-stoichiometric reduction of C1 by substrate. A comparison of the stoichiometries of reduction, and the apparent second order rate constants (K cat /K m) indicated that saturating MOAS elicits two distinct enzyme-inhibitor (EI) intermediates. One form does not bind substrate, but the other does. In contrast, saturating FAM leads to a predominant EI form capable of binding substrate. We suggest that these differences can be correlated to the respective effects of each inhibitor on the position of the ISP, and the integrity of a distal substrate binding site. The results also indicate that binding of these inhibitory substrate analogues to the proximal niche of the Qo domain significantly increases the DG à for reduction of C1.
Journal of medicinal chemistry, 2015
The p97 AAA-ATPase plays vital roles in mechanisms of protein homeostasis, including ubiquitin-proteasome system (UPS) mediated protein degradation, endoplasmic reticulum-associated degradation (ERAD) and autophagy. Herein we describe our lead optimization efforts focused on in vitro potency, ADME and pharmaceutical properties that led to the discovery of a potent, ATP-competitive, D2-selective and orally bioavailable p97 inhibitor 71, CB-5083. Treatment of tumor cells with 71 leads to significant accumulation of markers associated with inhibition of UPS and ERAD functions which induces irresolvable proteotoxic stress and cell death. In tumor bearing mice, oral administration of 71 causes rapid accumulation of markers of the unfolded protein response (UPR) and subsequently induces apoptosis leading to sustained anti-tumor activity in in vivo xenograft models of both solid and hematological tumors. 71 has been taken into phase 1 clinical trials in patients with multiple myeloma and s...
Structural basis of specificity of a peptidyl urokinase inhibitor, upain-1
Journal of structural …, 2007
Urokinase-type plasminogen activator (uPA) plays a crucial role in the regulation of plasminogen activation, tumor cell adhesion and migration. The inhibition of uPA activity is a promising mechanism for anti-cancer therapy. A cyclic peptidyl inhibitor, upain-1, CSWRGLENHRMC, was identified recently as a competitive and highly specific uPA inhibitor. We determined the crystal structure of uPA in complex with upain-1 at 2.15 Å . The structure reveals that the cyclic peptide adopts a rigid conformation stabilized by a disulfide bond (residues 1-12) and three tight beta turns (residues 3-6, 6-9, 9-12). The Glu7 residue of upain-1 forms hydrogen bonds with the main chain nitrogen atoms of residues 4, 5, and 6 of upain-1, and is also critical for maintaining the active conformation of upain-1. The Arg4 of upain-1 is inserted into the uPA's specific S1 pocket. The Ser2 residue of upain-1 locates close to the S1b pocket of uPA. The Gly5 and Glu7 residues of upain-1 occupy the S2 pocket and the oxyanion hole of uPA, respectively. Furthermore, the Asn8 residue of upain-1 binds to the 37-and 60-loops of uPA and renders the specificity of upain-1 for uPA. Based on this structure, a new pharmacophore for the design of highly specific uPA inhibitors was proposed.
Clinical Proteomics, 2004
Methotrexate has been a clinical agent used in cancer, immunosuppression, rheumatoid arthritis, and other highly proliferative diseases for many years, yet its underlying molecular mechanism of action in these therapeutic areas is still unclear. We have previously reported using a chemical proteomics technique on several other potential pharmacodynamic targets of methotrexate. Here, using a frontal affinity chromatography with mass spectrometry detection, we confirm one of these targets, hypoxanthine-guanine amidophosphoribosyltransferase, as a true binder of methotrexate with a K d of 4.2 M. These results complement and confirm our recent study, but more importantly, shed light into the mechanism of action of methotrexate in oncology and other highly proliferative diseases and may help explain some unaccounted for effects of this drug. For example, despite the fact that DNA salvage pathway enzymes are highly active, methotrexate can be effective if it only targets enzymes of the de novo pathway.
Arginines 97 and 108 in CYP2C9 Are Important Determinants of the Catalytic Function
Biochemical and Biophysical Research Communications, 2000
Human cytochrome P450 2C9 (CYP2C9) is one of the major drug metabolising enzymes which exhibits a broad substrate specificity. The B-C loop is located in the active-site but has been difficult to model, owing to its diverse and flexible structure. To elucidate the function of the B-C loop we used homology modelling based on the Cyp102 structure in combination with functional studies of mutants using diclofenac as a model substrate for CYP2C9. The study shows the importance of the conserved arginine in position 97 and the arginine in position 108 for the catalytic function. The R97A mutant had a 13-fold higher K m value while the V max was in the same order as the wild type. The R108 mutant had a 100-fold lower activity with diclofenac compared to the wild-type enzyme. The other six mutants (S95A, F100A, L102A, E104A, R105A, and N107A) had kinetic parameters similar to the CYP2C9 wild-type. Our homology model based on the CYP102 structure as template indicates that R97, L102, and R105 are directed into the active site, whereas R108 is not. The change in catalytic function when arginine 97 was replaced with alanine and the orientation of this amino acid in our homology model indicates its importance for substrate interaction.
Gut, 2014
Objective Capecitabine is an oral 5-fluorouracil (5-FU) pro-drug commonly used to treat colorectal carcinoma and other tumours. About 35% of patients experience dose-limiting toxicity. The few proven genetic biomarkers of 5-FU toxicity are rare variants and polymorphisms, respectively, at candidate loci dihydropyrimidine dehydrogenase (DPYD) and thymidylate synthase (TYMS). Design We investigated 1456 polymorphisms and rare coding variants near 25 candidate 5-FU pathway genes in 968 UK patients from the QUASAR2 clinical trial. Results We identified the first common DPYD polymorphisms to be consistently associated with capecitabine toxicity, rs12132152 (toxicity allele frequency (TAF)=0.031, OR=3.83, p=4.31×10 −6 ) and rs12022243 (TAF=0.196, OR=1.69, p=2.55×10 −5 ). rs12132152 was particularly strongly associated with hand-foot syndrome (OR=6.1, p=3.6×10 −8 ). The rs12132152 and rs12022243 associations were independent of each other and of previously reported DPYD toxicity variants. Nextgeneration sequencing additionally identified rare DPYD variant p.Ala551Thr in one patient with severe toxicity. Using functional predictions and published data, we assigned p.Ala551Thr as causal for toxicity. We found that polymorphism rs2612091, which lies within an intron of ENOSF1, was also associated with capecitabine toxicity (TAF=0.532, OR=1.59, p=5.28×10 −6 ). ENSOF1 is adjacent to TYMS and there is a poorly characterised regulatory interaction between the two genes/proteins. Unexpectedly, rs2612091 fully explained the previously reported associations between capecitabine toxicity and the supposedly functional TYMS variants, 5 0 VNTR 2R/3R and 3 0 UTR 6 bp ins-del. rs2612091 genotypes were, moreover, consistently associated with ENOSF1 mRNA levels, but not with TYMS expression. Conclusions DPYD harbours rare and common capecitabine toxicity variants. The toxicity polymorphism in the TYMS region may actually act through ENOSF1.
Febs Journal, 2009
The enzyme α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD) is a zinc-dependent amidohydrolase that participates in picolinic acid (PA), quinolinic acid (QA) and NAD homeostasis. Indeed, the enzyme stands at a branch point of the tryptophan to NAD pathway, and determines the final fate of the amino acid, i.e. transformation into PA, complete oxidation through the citric acid cycle, or conversion into NAD through QA synthesis. Both PA and QA are key players in a number of physiological and pathological conditions, mainly affecting the central nervous system. As their relative concentrations must be tightly controlled, modulation of ACMSD activity appears to be a promising prospect for the treatment of neurological disorders, including cerebral malaria. Here we report the 2.0 Å resolution crystal structure of human ACMSD in complex with the glycolytic intermediate 1,3-dihydroxyacetonephosphate (DHAP), refined to an R-factor of 0.19. DHAP, which we discovered to be a potent enzyme inhibitor, resides in the ligand binding pocket with its phosphate moiety contacting the catalytically essential zinc ion through mediation of a solvent molecule. Arg47, Asp291 and Trp191 appear to be the key residues for DHAP recognition in human ACMSD. Ligand binding induces a significant conformational change affecting a strictly conserved Trp–Met couple, and we propose that these residues are involved in controlling ligand admission into ACMSD. Our data may be used for the design of inhibitors with potential medical interest, and suggest a regulatory link between de novo NAD biosynthesis and glycolysis.
Free Radical Biology & Medicine, 2010
Unlike intermolecular disulfide bonds, other protein cross-links arising from oxidative modifications cannot be reversed and are presumably more toxic to cells because they may accumulate and induce protein aggregation. However, most of these irreversible protein cross-links remain poorly characterized. For instance, the antioxidant enzyme human superoxide dismutase 1 (hSod1) has been reported to undergo non-disulfide covalent dimerization and further oligomerization during its bicarbonate-dependent peroxidase activity. The dimerization was shown to be dependent on the oxidation of the single, solvent-exposed Trp32 residue of hSod1, but the covalent dimer was not isolated nor was its structure determined. In this work, the hSod1 covalent dimer was isolated, digested with trypsin in H2O and H218O, and analyzed by UV–Vis spectroscopy and mass spectrometry (MS). The results demonstrate that the covalent dimer consists of two hSod1 subunits cross-linked by a ditryptophan, which contains a bond between C3 and N1 of the respective Trp32 residues. We further demonstrate that the cross-link cleaves under usual MS/MS conditions leading to apparently unmodified Trp32, partially hinders proteolysis, and provides a mechanism to explain the formation of hSod1 covalent trimers and tetramers. This characterization of the covalent hSod1 dimer identifies a novel oxidative modification of protein Trp residues and provides clues for studying its occurrence in vivo.