The Gut Microflora and its Metabolites Regulate the Molecular Crosstalk between Diabetes and Neurodegeneration (original) (raw)
Related papers
Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis
The gut microbiota is essential to health and has recently become a target for live bacterial cell biotherapies for various chronic diseases including metabolic syndrome, diabetes, obesity and neurodegenerative disease. Probiotic biotherapies are known to create a healthy gut environment by balancing bacterial populations and promoting their favorable metabolic action. The microbiota and its respective metabolites communicate to the host through a series of biochemical and functional links thereby affecting host homeostasis and health. In particular, the gastroin-testinal tract communicates with the central nervous system through the gut–brain axis to support neuronal development and maintenance while gut dysbiosis manifests in neurological disease. There are three basic mechanisms that mediate the communication between the gut and the brain: direct neuronal communication, endocrine signaling mediators and the immune system. Together, these systems create a highly integrated molecul...
Effects of gut microbiota on neurodegenerative diseases
Frontiers in Aging Neuroscience
A progressive degradation of the brain’s structure and function, which results in a reduction in cognitive and motor skills, characterizes neurodegenerative diseases (NDs) such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD). The morbidity linked to NDs is growing, which poses a severe threat to human being’s mental and physical ability to live well. The gut-brain axis (GBA) is now known to have a crucial role in the emergence of NDs. The gut microbiota is a conduit for the GBA, a two-way communication system between the gut and the brain. The myriad microorganisms that make up the gut microbiota can affect brain physiology by transmitting numerous microbial chemicals from the gut to the brain via the GBA or neurological system. The synthesis of neurotransmitters, the immunological response, and the metabolism of lipids and glucose have all been demonstrated to be impacted by alterations in the gut microbiota,...
Antioxidants, 2021
The fact that millions of people worldwide suffer from Alzheimer’s disease (AD) or Parkinson’s disease (PD), the two most prevalent neurodegenerative diseases (NDs), has been a permanent challenge to science. New tools were developed over the past two decades and were immediately incorporated into routines in many laboratories, but the most valuable scientific contribution was the “waking up” of the gut microbiota. Disturbances in the gut microbiota, such as an imbalance in the beneficial/pathogenic effects and a decrease in diversity, can result in the passage of undesired chemicals and cells to the systemic circulation. Recently, the potential effect of probiotics on restoring/preserving the microbiota was also evaluated regarding important metabolite and vitamin production, pathogen exclusion, immune system maturation, and intestinal mucosal barrier integrity. Therefore, the focus of the present review is to discuss the available data and conclude what has been accomplished over ...
Frontiers in Cellular Neuroscience
As the world population ages, the burden of age-related health problems grows, creating a greater demand for new novel interventions for healthy aging. Advancing aging is related to a loss of beneficial mutualistic microbes in the gut microbiota caused by extrinsic and intrinsic factors such as diet, sedentary lifestyle, sleep deprivation, circadian rhythms, and oxidative stress, which emerge as essential elements in controlling and prolonging life expectancy of healthy aging. This condition is known as gut dysbiosis, and it affects normal brain function via the brain-gut microbiota (BGM) axis, which is a bidirectional link between the gastrointestinal tract (GIT) and the central nervous system (CNS) that leads to the emergence of brain disorders such as Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD). Here, we reviewed the role of the gut microbiome in aging and neurodegenerative diseases, as well as provide...
Influence of the Gut Microbiota on the Development of Neurodegenerative Diseases
Mediators of Inflammation
Neurodegenerative disorders are marked by neuronal death over time, causing a variety of cognitive and motor dysfunctions. Protein misfolding, neuroinflammation, and mitochondrial and protein clearance system dysfunction have all been identified as common pathways leading to neurodegeneration in recent decades. An altered microbiome of the gut, which is considered to play a central role in diseases as well as health, has recently been identified as another potential feature seen in neurodegenerative disorders. An array of microbial molecules that are released in the digestive tract may mediate gut-brain connections and permeate many organ systems, including the nervous system. Furthermore, recent findings from clinical as well as preclinical trials suggest that the microbiota of the gut plays a critical part in gut-brain interplay and that a misbalance in the composition of the gut microbiome may be linked to the etiology of neurological disorders (majorly neurodegenerative health p...
Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2020
Alzheimer's disease (AD) is a complex multifactorial disease involving chronic neuroinflammation and neurodegeneration. It has been recently recognized that gut microbiota interacts with the brain, and it is termed as microbiota-gut-brain axis. Modulation of this axis has been recently reported to affect the pathogenesis of neurodegenerative diseases, such as AD. Gut microbiota has a pivotal role in regulating multiple neuro-chemical pathways through the highly interconnected gut-brain axis. Recent emerging evidences have highlighted that the intestinal microflora takes part in bidirectional communication between the gut and the brain. Due to this, the researchers have suggested that human gut microflora may even act as the "second brain" and may be responsible for neurodegenerative disorders like Alzheimer's disease. Dysbiosis of gut microbiota can induce increased intestinal permeability and systemic inflammation. This may lead to the development of AD pathologies and cognitive impairment via the neural, immune, endocrine, and metabolic pathways. Thus, the modulation of gut microbiota through personalized diet, oral bacteriotherapy may lead to alteration of gut microbiota their products including amyloid protein. It has been demonstrated that modulation of the gut microbiota induces beneficial effects on neuronal pathways consequently leading to delay the progression of Alzheimer's disease. Thus, this approach may provide a novel therapeutic option for treatment of AD.
Life, 2021
The central nervous system was classically perceived as anatomically and functionally independent from the other visceral organs. But in recent decades, compelling evidence has led the scientific community to place a greater emphasis on the role of gut microbes on the brain. Pathological observations and early gastrointestinal symptoms highlighted that gut dysbiosis likely precedes the onset of cognitive deficits in Alzheimer’s disease (AD) and Parkinson’s disease (PD) patients. The delicate balance in the number and functions of pathogenic microbes and alternative probiotic populations is critical in the modulation of systemic inflammation and neuronal health. However, there is limited success in restoring healthy microbial biodiversity in AD and PD patients with general probiotics interventions and fecal microbial therapies. Fortunately, the gut microflora is susceptible to long-term extrinsic influences such as lifestyle and dietary choices, providing opportunities for treatment ...
Emerging role of gut microbiota dysbiosis in neuroinflammation and neurodegeneration
Frontiers in Neurology, 2023
Alzheimer's disease (AD), is a chronic age-related progressive neurodegenerative disorder, characterized by neuroinflammation and extracellular aggregation of Aβ peptide. Alzheimer's a ects every in individuals aged years and above. Recent studies suggest that the intestinal microbiota plays a crucial role in modulating neuro-inflammation which in turn influences Aβ deposition. The gut and the brain interact with each other through the nervous system and chemical means via the blood-brain barrier, which is termed the Microbiota Gut Brain Axis (MGBA). It is suggested that the gut microbiota can impact the host's health, and numerous factors, such as nutrition, pharmacological interventions, lifestyle, and geographic location, can alter the gut microbiota composition. Although, the exact relationship between gut dysbiosis and AD is still elusive, several mechanisms have been proposed as drivers of gut dysbiosis and their implications in AD pathology, which include, action of bacteria that produce bacterial amyloids and lipopolysaccharides causing macrophage dysfunction leading to increased gut permeability, hyperimmune activation of inflammatory cytokines (ILβ, IL-, IL-, and NLRP), impairment of gut-blood brain barrier causing deposition of Aβ in the brain, etc. The study of microorganisms associated with dysbiosis in AD with the aid of appropriate model organisms has recognized the phyla Bacteroidetes and Firmicutes which contain organisms of the genus Escherichia, Lactobacillus, Clostridium, etc., to contribute significantly to AD pathology. Modulating the gut microbiota by various means, such as the use of prebiotics, probiotics, antibiotics or fecal matter transplantation, is thought to be a potential therapeutic intervention for the treatment of AD. This review aims to summarize our current knowledge on possible mechanisms of gut microbiota dysbiosis, the role of gut brain microbiota axis in neuroinflammation, and the application of novel targeted therapeutic approaches that modulate the gut microbiota in treatment of AD.
Role Of Gut Microflora In The Development Of Obesity And Type Ii Diabetes
2018
Obesity and its associated complications like Type II diabetes are reaching epidemic stages. Increased food intake and lack of exercise are two main contributing factors. Recent work has been highlighting an increasingly more important role of gut microbiota in metabolic disorders. The human gut harbours more than 100 trillion microbial cells, which have an essential role in human metabolic regulation via their symbiotic interactions with the host. The gut microbiota plays a major role in the development of food absorption and low grade inflammation, two key processes in obesity and diabetes. The present review discusses new findings that may explain how gut microbiota can be involved in the development of obesity and insulin resistance. It will further look at the possible ways to harness the beneficial aspects of the gut microbiota to combat these metabolic disorders and reduce their impact.
J Evid Based Integr Med., 2020
Recent data suggest gut microbiota dysbiosis as a contributing factor in neurodegenerative diseases, such as Parkinson's Disease (PD) and Alzheimer's Disease (AD), and these pathologies may manifest via the microbiota-gut-brain-axis, which comprises bidirectional communication through neuroimmune, neuroendocrine, and direct neural pathways such as the vagus nerve. Preclinical and human clinical trial data reveal exciting potential for novel treatment targets and therapeutic modulation with prebiotics, medicinal herbs, probiotics, and synbiotics in health, aging, and neurodegeneration and are reviewed here. While greater insights and characterization of the microbiota-gut-brain axis have been revealed over the past decade, salient questions related to the pathology, pathogenesis and clinical treatment of the axis in the context of both health and neurodegenerative disease remain and are discussed in this review. Future directions such as additional well-controlled, large scale, longitudinal human clinical trials are urgently needed to further elucidate both mechanism and therapeutic opportunity in health, neurological disease, and disease subpopulations to ensure that the next decade ushers the dawn of targeted therapeutic modulation of the microbiota-gut-brain axis.