Wafer-level packaging and laser bonding as an approach for silicon-into-lab-on-chip integration (original) (raw)

Journal of Micromechanics and Microengineering, 2013

Abstract

ABSTRACT A novel approach for the integration of silicon biosensors into microfluidics is presented. Our approach is based on wafer-level packaging of the silicon die and a laser-bonding process of the resulting mold package into a polymer-multilayer stack. The introduction of a flexible and 40 μm thin hot melt foil as an intermediate layer enables laser bonding between materials with different melting temperatures, where standard laser welding processes cannot be employed. All process steps are suitable for mass production, e.g. the approach does not involve any dispensing steps for glue or underfiller. The integration approach was demonstrated and evaluated regarding process technology by wafer-level redistribution of daisy chain silicon dies representing a generic biosensor. Electrical connection was successfully established and laser-bonding tensile strength of 5.7 N mm −2 and burst pressure of 587 kPa at a temperature of 100 °C were achieved for the new material combination. The feasibility of the complete packaging approach was shown by the fabrication of a microfluidic flow cell with embedded mold package.

M. Daub hasn't uploaded this paper.

Let M. know you want this paper to be uploaded.

Ask for this paper to be uploaded.