A new representation of rotational flow fields satisfying Euler's equation of an ideal compressible fluid (original) (raw)

Abstract

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (23)

  1. Batchelor G K 1967 An Introduction to Fluid Dynamics (Cambridge: Cambridge University Press) p 615
  2. Bernoulli D 1738 Hydrodynamica (Strasbourg: Johannes Reinhold Dulsecker); [also English translation] Hydrodynamics (by Daniel Bernoulli) and Hydraulics (by Johann Bernoulli) (New York: Dover Publications 1968) p 456
  3. Berry M V, Chambers R G, Large M D , Upstill C and Walmsley 1980 Wavefront dislocations in the Aharonov-Bohm effect and its water wave analogue Eur. J. Phys. 1 154-162.
  4. Bretherton F P 1970 A note on Hamilton's principle for perfect fluids J. Fluid Mech. 44 19-31.
  5. Clebsch A 1859 Über die Integration der hydrodynamischen Gleichungen J. Reine und Angew. Math. 56 1-10
  6. Coste C, Lund F, and Umeki M 1999 Scattering of dislocated wave fronts by vertical vorticity and the Aharonov-Bohm effect, I Shallow water Phys Rev E 60 4908-4916
  7. Eckart C The electrodynamics of material media Phys. Rev. 54 920-923
  8. Eckart C 1960 Variation principles of hydrodynamics Phys. Fluids 3 421
  9. Euler L 1755 Principes généraux du movement des fluides, Memoire de l'academie des sciences de Berlin 11 (Berlin Libraires 1757) 274-315; (also) Leonhardi Euleri, Opera Omnia ser.2 vol.XII ed C Truesdell (Lausanne, Euler Committee of the Swiss Academy of Science) 54-91; [also English translation] General laws of the motion of fluids Fluid Dynamics 34 (1999) 801-822 https://www.oca.eu/etc7/EE250/historical note.html
  10. Frankel T 1997 The Geometry of Physics (Cambridge: Cambridge University Press) p 654
  11. Herivel J W 1955 The derivation of the equations of motion of an ideal fluid by Hamilton's principle Proc. Cambridge Phil. Soc. 51 344-349
  12. Kambe T 2003 Gauge principle for flows of a perfect fluid Fluid Dyn. Res. 32 193-199
  13. Kambe T 2007a Elementary Fluid Mechanics (Singapore: World Scientific) p 386
  14. Kambe T 2007b Gauge principle and variational formulation for ideal fluids with reference to translation symmetry Fluid Dyn. Res. 39 98-120
  15. Kambe T 2008 Variational formulation of ideal fluid flows according to gauge principle Fluid Dyn. Res. 40 399-426.
  16. Kambe T 2010 Geometrical Theory of Dynamical Systems and Fluid Flows (Revised ed) Chap.7 (Singapore: World Scientific) p 421
  17. Lamb H 1932 Hydrodynamics (Cambridge: Cambridge University Press) p 738
  18. Liepmann H W and Roshko A 1957 Elements of Gasdynamics (New York: John Wiley & Sons) p 443
  19. Lin C C 1963 Hydrodynamics of helium II, Liquid Helium Proc. Int. Sch. Phys. Enrico Fermi XXI (NY: Academic Press) 93-146
  20. Salmon R 1988 Hamiltonian fluid mechanics Ann. Rev. Fluid Mech. 20 225-256
  21. Seliger R L and Whitham G B 1968 Variational principle in continuum mechanics Proc. Roy. Soc. A 305 1-25
  22. Serrin J 1959 Mathematical principles of classical fluid mechanics Encyclopedia of Physics (ed S Flügge and C Truesdell: Springer) 125-263
  23. Shapiro A H 1969 Film Notes for Vorticity (National Committee for Fluid Mechanics Films) (Chicago: Encyclopaedia Britannica Edu. Corp.) http://web.mit.edu/hml/ncfmf/09VOR.pdf