Classical limit of time-dependent quantum field theory-a Schwinger-Dyson approach (original) (raw)

Abstract

We rewrite the Martin-Siggia-Rose (MSR) formalism for the statistical dynamics of classical fields in a covariant second order form appropriate for the statistical dynamics of relativistic field theory. This second order formalism is related to a rotation of Schwinger's closed time path (CTP) formalism for quantum dynamics, with the main difference being that certain vertices are absent in the classical theory. These vertices are higher order in an h expansion.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (17)

  1. G. Aarts and J. Smit, Nucl. Phys. B 511 (1998) 451; W. Buchmüller and A. Jakovác,Phys. Lett. B 407 (1997) 39.
  2. J. Schwinger, J. Math. Phys. 2 (1961) 407;
  3. P. M. Bakshi and K. T. Ma- hanthappa, J. Math. Phys. 4 (1963) 1; 4 (1963) 12; L. V. Keldysh, Zh. Eksp. Teo. Fiz. 47 (1964) 1515 [Sov. Phys. JETP 20 (1965)] 1018;
  4. G. Zhou, Z. Su, B. Hao and L. Yu, Phys. Rep. 118 (1985) 1;
  5. P.C. Martin, E.D. Siggia and H.A. Rose, Phys. Rev. A 8 (1973) 423;
  6. H.A. Rose, Harvard Thesis (1974) (Unpublished).
  7. In the context of quantum optics, a formalism for relating quantum and classical description is discussed in L.I. Plimat, Phys. Rev. A 50 (1994) 2120.
  8. B. Jouvet and R. Phythian, Phys. Rev. A 19 (1979) 1350.
  9. C. Wetterich, Phys. Rev. Lett. 78 (1997) 3598 [hep-th/9612206];
  10. L. Bettencourt and C. Wetterich, Phys. Lett. B430 (1998) 140 [hep- ph/9712429];
  11. L. Bettencourt and C. Wetterich, [hep-ph/9805360];
  12. G. Bonini and C. Wetterich, Phys. Rev. D 60 (1999) 105026 [hep- ph/9907533].
  13. G. Aarts, G.F. Bonini and C. Wetterich, Phys.Rev. D63 (2001) 025012 [hep-ph/007357].
  14. J.M. Luttinger and J.C. Phys. Rev. 118 (1960) 1417; G. Baym, Phys. Rev. 127 (1962) 1391; B. Vanderheyden and G. Baym To appear in 'Progress in Nonequilibrium Green's functions', M. Bonitz (Ed.), World Scientific, Singapore 2000 [hep-ph/0002291].
  15. M. M. Cornwall, R. Jackiw and E. Tomboulis, Phys. Rev. D 10 (1974) 2428.
  16. R.H. Kraichnan, J. Math. Phys. 2 (1961) 124; Erratum 3 (1962) 205.
  17. K. Blagoev, F. Cooper, J. Dawson and B. Mihaila [hep-ph/0106195].