Universal features of quantum bounce in loop quantum cosmology (original) (raw)

Genericness of pre-inflationary dynamics and probability of the desired slow-roll inflation in modified loop quantum cosmologies

We study the evolution of spatially flat Friedmann-Lemaître-Robertson-Walker universe for chaotic and Starobinsky potentials in the framework of modified loop quantum cosmologies. These models result in a non-singular bounce as in loop quantum cosmology, but with far more complex modified Friedmann dynamics with higher order than quadratic terms in energy density. For the kinetic energy dominated bounce, we obtain analytical solutions using different approximations and compare with numerical evolution for various physical variables. The relative error turns out to be less than 0.3% in the bounce regime for both of the potentials. Generic features of dynamics, shared with loop quantum cosmology, are established using analytical and numerical solutions. Detailed properties of three distinct phases in dynamics separating bounce regime, transition stage and inflationary phase are studied. For the potential energy dominated bounce, we qualitatively describe its generic features and confirm by simulations that they all lead to the desired slow-roll phase in the chaotic inflation. However, in the Starobinsky potential, the potential energy dominated bounce cannot give rise to any inflationary phase. Finally, we compute the probability for the desired slow-roll inflation to occur in the chaotic inflation and as in loop quantum cosmology, find a very large probability for the universe to undergo inflation.

Loop Quantum Cosmology corrections to inflationary models

2008

In the recent years the quantization methods of Loop Quantum Gravity have been successfully applied to the homogeneous and isotropic Friedmann-Robertson-Walker space-times. The resulting theory, called Loop Quantum Cosmology (LQC), resolves the Big Bang singularity by replacing it with the Big Bounce. We argue that LQC generates also certain corrections to field theoretical inflationary scenarios. These corrections imply that in the LQC the effective sonic horizon becomes infinite at some point after the bounce and that the scale of the inflationary potential implied by the COBE normalisation increases. The evolution of scalar fields immediately after the Bounce becomes modified in an interesting way. We point out that one can use COBE normalisation to establish an upper bound on the quantum of length of LQG.

Observational constraints on warm inflation in loop quantum cosmology

Journal of Cosmology and Astroparticle Physics, 2019

By incorporating quantum aspects of gravity, Loop Quantum Cosmology (LQC) provides a self-consistent extension of the inflationary scenario, allowing for modifications in the primordial inflationary power spectrum with respect to the standard General Relativity one. We investigate such modifications and explore the constraints imposed by the Cosmic Microwave Background (CMB) Planck Collaboration data on the Warm Inflation (WI) scenario in the LQC context. We obtain useful relations between the dissipative parameter of WI and the bounce scale parameter of LQC. We also find that the number of required e-folds of expansion from the bounce instant till the moment the observable scales crossed the Hubble radius during inflation can be smaller in WI than in CI. In particular, we find that this depends on how large is the dissipation in WI, with the amount of required e-folds decreasing with the increasing of the dissipation value. Furthermore, by performing a Monte Carlo Markov Chain anal...

Inflationary spectra with inverse-volume corrections in loop quantum cosmology and their observational constraints from Planck 2015 data

We derive the primordial power spectra, spectral indices and runnings of both cosmological scalar perturbations and gravitational waves in the framework of loop quantum cosmology with the inverse-volume quantum corrections. This represents an extension of our previous treatment for σ being integers to the case with any given value of σ. For this purpose, we adopt a new calculational strategy in the uniform asymptotic approximation, by expanding the involved integrals first in terms of the inverse-volume correction parameter to its first-order, a consistent requirement of the approximation of the inverse-volume corrections. In this way, we calculate explicitly the quantum gravitational corrections to the standard inflationary spectra and spectral indices to the second-order of the slow-roll parameters, and obtain the observational constraints on the inverse-volume corrections from Planck 2015 data for various values of σ. Using these constraints we discuss whether these quantum gravitational corrections lead to measurable signatures in the cosmological observations. We show that the scale-dependent contributions to inflationary spectra from the inverse-volume corrections could be well within the range of the detectability of the forthcoming generation of experiments.

M ar 2 01 1 Probability of Inflation in Loop Quantum Cosmology

2011

Inflationary models of the early universe provide a natural mechanism for the formation of large scale structure. This success brings to forefront the question of naturalness: Does a sufficiently long slow roll inflation occur generically or does it require a careful fine tuning of initial parameters? In recent years there has been considerable controversy on this issue [1–4]. In particular, for a quadratic potential, Kofman, Linde and Mukhanov [2] have argued that the probability of inflation with at least 65 e-foldings is close to one, while Gibbons and Turok [4] have argued that this probability is suppressed by a factor of ∼ 10−85. We first clarify that such dramatically different predictions can arise because the required measure on the space of solutions is intrinsically ambiguous in general relativity. We then show that this ambiguity can be naturally resolved in loop quantum cosmology (LQC) because the big bang is replaced by a big bounce and the bounce surface can be used t...