Membrane-dependent effects of a cytoplasmic helix on the structure and drug binding of the influenza virus M2 protein (original) (raw)
Related papers
Structural Influences: Cholesterol, Drug, and Proton Binding to Full-Length Influenza A M2 Protein
Biophysical journal, 2016
The structure and functions of the M2 protein from Influenza A are sensitive to pH, cholesterol, and the antiinfluenza drug Amantadine. This is a tetrameric membrane protein of 97 amino-acid residues that has multiple functions, among them as a proton-selective channel and facilitator of viral budding, replacing the need for the ESCRT proteins that other viruses utilize. Here, various amino-acid-specific-labeled samples of the full-length protein were prepared and mixed, so that only interresidue (13)C-(13)C cross peaks between two differently labeled proteins representing interhelical interactions are observed. This channel is activated at slightly acidic pH values in the endosome when the His(37) residues in the middle of the transmembrane domain take on a +2 or +3 charged state. Changes observed here in interhelical distances in the N-terminus can be accounted for by modest structural changes, and no significant changes in structure were detected in the C-terminal portion of the ...
Structural basis for the function and inhibition of an influenza virus proton channel
Nature, 2008
The M2 protein from influenza A virus is a pH-activated proton channel that mediates acidification of the interior of viral particles entrapped in endosomes. M2 is the target of the anti-influenza drugs amantadine and rimantadine; recently, resistance to these drugs in humans, birds and pigs has reached more than 90% (ref. 1). Here we describe the crystal structure of the transmembrane-spanning region of the homotetrameric protein in the presence and absence of the channel-blocking drug amantadine. pH-dependent structural changes occur near a set of conserved His and Trp residues that are involved in proton gating 2 . The drug-binding site is lined by residues that are mutated in amantadine-resistant viruses 3,4 . Binding of amantadine physically occludes the pore, and might also perturb the pK a of the critical His residue. The structure provides a starting point for solving the problem of resistance to M2-channel blockers.
Frontiers in Physiology, 2016
The M2 protein from influenza A plays important roles in its viral cycle. It contains a single transmembrane helix, which oligomerizes into a homotetrameric proton channel that conducts in the low-pH environment of the host-cell endosome and Golgi apparatus, leading to virion uncoating at an early stage of infection. We studied conformational rearrangements that occur in the M2 core transmembrane domain residing on the lipid bilayer, flanked by juxtamembrane residues (M2TMD 21−49 fragment), upon its interaction with amantadine drug at pH 5.5 when M2 is conductive. We also tested the role of specific mutation and lipid chain length. Electron spin resonance (ESR) spectroscopy and electron microscopy were applied to M2TMD 21−49 , labeled at the residue L46C with either nitroxide spin-label or Nanogold ® reagent, respectively. Electron microscopy confirmed that M2TMD 21−49 reconstituted into DOPC/POPS at 1:10,000 peptide-to-lipid molar ratio (P/L) either with or without amantadine, is an admixture of monomers, dimers, and tetramers, confirming our model based on a dimer intermediate in the assembly of M2TMD 21−49. As reported by double electron-electron resonance (DEER), in DOPC/POPS membranes amantadine shifts oligomer equilibrium to favor tetramers, as evidenced by an increase in DEER modulation depth for P/L's ranging from 1:18,000 to 1:160. Furthermore, amantadine binding shortens the inter-spin distances (for nitroxide labels) by 5-8 Å, indicating drug induced channel closure on the C-terminal side. No such effect was observed for the thinner membrane of DLPC/DLPS, emphasizing the role of bilayer thickness. The analysis of continuous wave (cw) ESR spectra of spin-labeled L46C residue provides additional support to a more compact helix bundle in amantadine-bound M2TMD 21−49 through increased motional ordering. In contrast to wild-type M2TMD 21−49 , the amantadine-bound form does not exhibit noticeable conformational changes in the case of G34A mutation found in certain drug-resistant influenza strains. Thus, the inhibited M2TMD 21−49 channel is a stable tetramer with a closed C-terminal exit pore. This work is aimed at contributing to the development of structure-based anti-influenza pharmaceuticals.
Influenza A virus M2 ion channel protein: a structure-function analysis
Journal of Virology, 1994
A structure-function analysis of the influenza A virus M2 ion channel protein was performed. The M2 protein of human influenza virus A/Udorn/72 and mutants containing changes on one face of the putative alpha helix of the M2 transmembrane (TM) domain, several of which lead to amantadine resistance when found in virus, were expressed in oocytes of Xenopus laevis. The membrane currents of oocytes expressing mutant M2 ion channels were measured at both normal and low pH, and the amantadine-resistant mutant containing the change of alanine at residue 30 to threonine was found to have a significantly attenuated low pH activation response. The specific activity of the channel current of the amantadine-resistant mutants was investigated by measuring the membrane current of individual oocytes followed by quantification of the amount of M2 protein expressed in these single oocytes by immunoblotting analysis. The data indicate that changing residues on this face of the putative alpha helix of...
Biochemistry, 2000
The M2 proton channel from the influenza A virus is a small protein with a single transmembrane helix that associates to form a tetramer in vivo. This protein forms proton-selective ion channels, which are the target of the drug amantadine. Here, we propose a mechanism for the pH-dependent association, and amantadine binding of M2, based on studies of a peptide representing the M2 transmembrane segment in dodecylphosphocholine micelles. Using analytical ultracentrifugation, we find that the sedimentation curves for the peptide depend on its concentration in the micellar phase. The data are well-described by a monomer-tetramer equilibrium, and the binding of amantadine shifts the monomer-tetramer equilibrium toward tetrameric species. Both tetramerization and the binding of amantadine lead to increases in the magnitude of the ellipticity at 223 nm in the circular dichroism spectrum of the peptide. The tetramerization and binding of amantadine are more favorable at elevated pH, with a pK a that is assigned to a His side chain, the only ionizable residue within the transmembrane helix. Our results, interpreted quantitatively in terms of a reversible monomer and tetramer protonation equilibrium model, suggest that amantadine competes with protons for binding to the deprotonated tetramer, thereby stabilizing the tetramer in a slightly altered conformation. This model accounts for the observed inhibition of proton flux by amantadine. Additionally, our measurements suggest that the M2 tetramer is substantially protonated at neutral pH and that both singly and doubly protonated states could be involved in M2's proton conduction at more acidic pHs. †
Binding Hot Spots and Amantadine Orientation in the Influenza A Virus M2 Proton Channel
Biophysical Journal, 2009
Structures of truncated versions of the influenza A virus M2 proton channel have been determined recently by x-ray crystallography in the open conformation of the channel, and by NMR in the closed state. The structures differ in the position of the bound inhibitors. The x-ray structure shows a single amantadine molecule in the middle of the channel, whereas in the NMR structure four drug molecules bind at the channel's outer surface. To study this controversy we applied computational solvent mapping, a technique developed for the identification of the most druggable binding hot spots of proteins. The method moves molecular probes-small organic molecules containing various functional groups-around the protein surface, finds favorable positions using empirical free energy functions, clusters the conformations, and ranks the clusters on the basis of the average free energy. The results of the mapping show that in both structures the primary hot spot is an internal cavity overlapping the amantadine binding site seen in the x-ray structure. However, both structures also have weaker hot spots at the exterior locations that bind rimantadine in the NMR structure, although these sites are partially due to the favorable interactions with the interfacial region of the lipid bilayer. As confirmed by docking calculations, the open channel binds amantadine at the more favorable internal site, in good agreement with the x-ray structure. In contrast, the NMR structure is based on a peptide/micelle construct that is able to accommodate the small molecular probes used for the mapping, but has a too narrow pore for the rimantadine to access the internal hot spot, and hence the drug can bind only at the exterior sites.
Virology, 1991
The evidence presented shows that the M2 protein of influenza A viruses exists in infected cells as a homotetramer composed of two disulfide-linked dimers held together by noncovalent interactions . The amphiphilic nature of the transmembrane a-helical domain is consistent with the protein forming a transmembrane channel with which smartsdine, the specific anti-influenza A drug, interacts. Together these features provide a structural basis for the hypothesis that M2 has a proton translocation function capable of regulating the pH of vesicles of the trans-Golgi network, a role important in promoting the correct maturation of the hemagglutinin glycoprotein . n 1991 Academic Press, inc .
Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers
Nature, 2010
The M2 protein of influenza A virus is a membrane-spanning tetrameric proton channel targeted by the antiviral drugs amantadine and rimantadine 1. Resistance to these drugs has compromised their effectiveness against many influenza strains, including pandemic H1N1. A recent crystal structure of M2 (22–46) showed electron densities attributed to a single amantadine in the amino-terminal half of the pore 2, indicating a physical occlusion mechanism for inhibition. However, a solution NMR structure of M2 (18 ...
pH-dependent secondary structure propensity of the influenza A virus M2 cytoplasmic tail
Biomolecular NMR Assignments, 2020
The cytoplasmic C-terminal tail of the matrix protein 2 (M2) from influenza A virus has a well conserved sequence and is involved in interactions with several host proteins as well as the influenza matrix protein 1 (M1). Whereas the transmembrane domain of M2 has been well characterised structurally and functionally, high resolution information about the distal cytoplasmic tail is lacking. Here we report the chemical shifts of the cytoplasmic tail of M2 and the chemical shift perturbations at low pH and in the presence of membrane mimetics. The cytoplasmic tail residues are mostly disordered but an extended backbone conformation is adopted by the LC3 binding motif and the putative M1 interaction site has partial helical content with a small pH-dependence. The chemical shift assignments provide a basis for further investigations into interactions of the M2 cytoplasmic tail with viral and host cell factors.