A new kind of carbohydrate array, its use for profiling antiglycan antibodies, and the discovery of a novel human cellulose-binding antibody (original) (raw)
Related papers
“Glycomics”: Development and Characterization of Glycan-Based Biotechnological Products
Cells and Culture, 2010
Antibodies to carbohydrate antigens are critical for the study of bacteria, tumors, blood groups, and cell-cell adhesion interactions; for the analysis of viral, hormone, and toxin receptors; and, finally, for analysis of the glycosylation of recombinant proteins. However, antibodies to carbohydrate structures are more difficult to develop because of the T-cell-independent response to carbohydrates. This can result in the production of low affinity and difficult to work with IgM antibodies to these molecules. Screening technologies that include IgM antibodies can cause selections of antibodies with low-affinity binding sites because of the net avidity enhancement. Unfortunately, the low-affinity binding site can also have a similar affinity for unwanted structures. Production of antibodies using cellular extracts can result in antibodies that react with multiple related structures, and therefore the resultant bioassays have sensitivity or specificity problems. Protein conjugates of saccharides for the production of polyclonal and monoclonal antibodies to carbohydrate structures can be used to solve these problems. For monoclonal antibody development to oligosaccharides, mapping with closely related saccharides allows the determination of the areas of the saccharide to which the antibody binds so that conclusions can be made concerning which saccharide structures will cross-react. Determination of the reactivity of the produced antibodies with related saccharide structures is essential prior to utilization.
Advances in Cancer Research, 2015
Recent research is uncovering unexpected ways that glycans contribute to biology, as well as new strategies for combatting disease using approaches involving glycans. To make full use of glycans for clinical applications, we need more detailed information on the location, nature, and dynamics of glycan expression in vivo. Such studies require the use of specimens acquired directly from patients. Effective studies of clinical specimens require low-volume assays, high precision measurements, and the ability to process many samples. Assays using affinity reagents-lectins and glycan-binding antibodies-can meet these requirements, but further developments are needed to make the methods routine and effective. Recent advances in the use of glycan-binding proteins could meet that need. The advances involve improved determination of specificity using glycan arrays; the availability of databases for mining and analyzing glycan array data; lectin engineering methods; and the ability to quantitatively interpret lectin measurements. Here we describe many of the challenges and opportunities involved in the application of these new approaches to the study of biological samples. The new tools hold promise for developing methods to improve the outcomes of patients afflicted with diseases characterized by aberrant glycan expression.
Glycan arrays: biological and medical applications
Current Opinion in Chemical Biology, 2008
Carbohydrates and their conjugates are involved in various biological events, including viral and bacterial infection, the immune response, differentiation and development, and the progression of tumor cell metastasis. Glycan arrays are a new technology that has enabled the high-sensitivity and rapid analysis carbohydrate-protein interaction and contribute to significant advances in glycomics. Glycan arrays use a minute amount of materials and can be used for high-throughput profiling and quantitative analysis and provide information for the development of carbohydrate-based vaccines and new drug discovery.
Multiplex glycan bead array for high throughput and high content analyses of glycan binding proteins
Nature communications, 2018
Glycan-binding proteins (GBPs) play critical roles in diverse cellular functions such as cell adhesion, signal transduction and immune response. Studies of the interaction between GBPs and glycans have been hampered by the availability of high throughput and high-content technologies. Here we report multiplex glycan bead array (MGBA) that allows simultaneous analyses of 384 samples and up to 500 glycans in a single assay. The specificity, sensitivity and reproducibility of MGBA are evaluated using 39 plant lectins, 13 recombinant anti-glycan antibodies, and mammalian GBPs. We demonstrate the utility of this platform by the analyses of natural anti-glycan IgM and IgG antibodies in 961 human serum samples and the discovery of anti-glycan antibody biomarkers for ovarian cancer. Our data indicate that the MGBA platform is particularly suited for large population-based studies that require the analyses of large numbers of samples and glycans.
The repertoire of circulating anti-carbohydrate antibodies of a given individual is often associated with its immunological status. Not only the individual immune condition determines the success in combating internal and external potential threat signals, but also the existence of a particular pattern of circulating anti-glycan antibodies (and their serological level variation) could be a significant marker of the onset and progression of certain pathological conditions. Here, we describe a Printed Glycan Array (PGA)-based methodology that offers the opportunity to measure hundreds of glycan targets with very high sensitivity; using a minimal amount of sample, which is a common restriction present when small animals (rats, mice, hamster, etc.) are used as models to address aspects of human diseases. As a representative example of this approach, we show the results obtained from the analysis of the repertoire of natural anti-glycan antibodies in BALB/c mice. We demonstrate that each BALB/c mouse involved in the study, despite being genetically identical and maintained under the same conditions, develops a particular pattern of natural anti-carbohydrate antibodies. This work claims to expand the use of PGA technology to investigate repertoire (specificities) and the levels of circulating anti-carbohydrates antibodies, both in health and during any pathological condition.
Molecular & Cellular Proteomics, 2015
Glucans are polymers of D-glucose with differing linkages in linear or branched sequences. They are constituents of microbial and plant cell-walls and involved in important bio-recognition processes, including immunomodulation, anticancer activities, pathogen virulence, and plant cellwall biodegradation. Translational possibilities for these activities in medicine and biotechnology are considerable. High-throughput micro-methods are needed to screen proteins for recognition of specific glucan sequences as a lead to structure-function studies and their exploitation. We describe construction of a "glucome" microarray, the first sequence-defined glycome-scale microarray, using a "designer" approach from targeted ligand-bearing glucans in conjunction with a novel high-sensitivity mass spectrometric sequencing method, as a screening tool to assign glucan recognition motifs. The glucome microarray comprises 153 oligosaccharide probes with high purity, representing major sequences in glucans. Negative-ion electrospray tandem mass spectrometry with collision-induced dissociation was used for complete linkage analysis of gluco-oligosaccharides in linear "homo" and "hetero" and branched sequences. The system is validated using antibodies and carbohydrate-binding modules known to target ␣or -glucans in different biological contexts, extending knowledge on their specificities, and applied to reveal new information on glucan recognition by two signaling molecules of the immune system against pathogens:
Nature Biotechnology, 2002
We describe microarrays of oligosaccharides as neoglycolipids and their robust display on nitrocellulose. The arrays are sourced from glycoproteins, glycolipids, proteoglycans, polysaccharides, whole organs, or from chemically synthesized oligosaccharides. We show that carbohydrate-recognizing proteins single out their ligands not only in arrays of homogeneous oligosaccharides but also in arrays of heterogeneous oligosaccharides. Initial applications have revealed new findings, including: (i) among O-glycans in brain, a relative abundance of the Lewis x sequence based on N-acetyllactosamine recognized by anti-L5, and a paucity of the Lewis x sequence based on poly-N-acetyllactosamine recognized by anti-SSEA-1; (ii) insights into chondroitin sulfate oligosaccharides recognized by an antiserum and an antibody (CS-56) to chondroitin sulfates; and (iii) binding of the cytokine interferon-γ (IFN-γ) and the chemokine RANTES to sulfated sequences such as HNK-1, sulfo-Lewis x , and sulfo-Lewis a , in addition to glycosaminoglycans. The approach opens the way for discovering new carbohydrate-recognizing proteins in the proteome and for mapping the repertoire of carbohydrate recognition structures in the glycome.
Microbe-focused glycan array screening platform
Proceedings of the National Academy of Sciences
Interactions between glycans and glycan binding proteins are essential for numerous processes in all kingdoms of life. Glycan microarrays are an excellent tool to examine protein–glycan interactions. Here, we present a microbe-focused glycan microarray platform based on oligosaccharides obtained by chemical synthesis. Glycans were generated by combining different carbohydrate synthesis approaches including automated glycan assembly, solution-phase synthesis, and chemoenzymatic methods. The current library of more than 300 glycans is as diverse as the mammalian glycan array from the Consortium for Functional Glycomics and, due to its microbial focus, highly complementary. This glycan platform is essential for the characterization of various classes of glycan binding proteins. Applications of this glycan array platform are highlighted by the characterization of innate immune receptors and bacterial virulence factors as well as the analysis of human humoral immunity to pathogenic glycans.
Analytical Biochemistry, 2010
Characterization of protein-carbohydrate interactions at the molecular level is important for understanding many glycan-mediated processes. Here we present a method for the identification of glycan ligands of carbohydrate-binding proteins. The glycans released from natural sources are labeled with biotinamidocaproyl hydrazide (BACH) and subsequently fractionated by high-performance liquid chromatography. Glycan fractions are screened for binding to carbohydrate-binding proteins (CBPs) using a microtitration plate binding assay; CBPs are immobilized, BACH-glycan fractions are added, and bound BACH-glycans are detected using alkaline phosphatase-conjugated streptavidin. The glycan structures in binding fractions are studied by (tandem) mass spectrometry, exoglycosidase treatment, and rechromatography, thereby revealing the glycan motifs recognized by the CBPs. Subsequent surface plasmon resonance experiments using a reverse setup with immobilization of the BACH-glycan ligands on streptavidincoated surfaces provide more information on glycan-CBP interactions via association and dissociation curves. The presented method is easy and fast, and the required instrumentation is available in many laboratories. The assay is very sensitive given that both the mass spectrometric analysis and the microtitration plate binding assay can be performed on femtomole amounts of BACH-glycans. This approach should be generally applicable to study and structurally identify carbohydrate ligands of anti-glycan antibodies and lectins.