Impact of Tissue, Canopy, and Landscape Factors on the Hyperspectral Reflectance Variability of Arid Ecosystems (original) (raw)

Abstract

Imaging Spectrometer data. Most immonly occur in arid ecosystems due to land use and climate portant, the relative impact of tissue, canopy, and landscape variability. Most arid land remote sensing efforts have fofactors on pixel-level reflectance shifted with plant composicused on detecting vegetation change using spectral indices, tion and phenology. We compared the ability to resolve such as the normalized vegetation index, with limited sucthese vegetation and soil factors using Airborne Visible cess. Less attention has focused on using the continuous and Infrared Imaging Spectrometer, Moderate Resolution shortwave spectrum (0.4 lm to 2.5 lm) for studying vegeta-Imaging Spectrometer, and Landsat Thematic Mapper option in arid environments. Using field measurements and tical channels and found that few factors could be aca photon transport model, we quantified the absolute and counted for unless most of the spectral range was aderelative importance of tissue, canopy, and landscape factors quately sampled. ©Elsevier Science Inc., 2000 that drive pixel-level shortwave reflectance variation along a land-cover gradient in the Chihuahuan Desert, New Mexico. Green foliage, wood, standing litter, and bare soil had INTRODUCTION distinctive spectral properties, often via specific, narrow

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (30)

  1. deWit, C. T. (1965), Photosynthesis of Leaf Canopies, Agric. Res. high-resolution databases for climate studies. J. Appl. Mete- Rep. 663, Pudoc, Wageningen, Netherlands. orol. 22:474-487.
  2. Dirmeyer, P. A., and Shukla, J. (1996), The effect on regional and Mesarch, M. A., Walter-Shea, E. A., Asner, G. P., and Middleton, global climate of expansion of the world's deserts. Quarterly J. E. A. (1999), A revised measurement methodology for conifer Roy. Meteorol. Soc. 122:451-461. needle spectral optical properties. Remote Sens. Environ.
  3. Duncan, J., Stow, D., Franklin, J., and Hope, A. (1993), Assessing 68:177-192. the relationship between spectral vegetation indices and shrub Middleton, E. M., Chan, S. S., Mesarch, M. A., and Walter- cover in the Jornada Basin, New Mexico. Int. J. Remote Shea, E. A. (1996), A revised methodology for spectral optical Sens. 14:3395-3416. properties of conifer needles. IGARSS 96 Digest 2:1005-1009.
  4. Field, C. B., Randerson, J. T., and Malmstrom, C. T. (1995), Milchunas, D. G., and Lauenroth, W. K. (1993), Quantitative Global net primary production: Combining ecology and re- effects of grazing on vegetation and soils over a global range mote sensing. Remote Sens. Environ. 51:74-88. of environments. Ecol. Monogr. 63:327-366.
  5. Friedel, M. H. (1997), Discontinuous change in arid woodland Myneni, R. B., Los, S. O., and Tucker, C. J. (1996), Satellite- and grassland vegetation along gradients of cattle grazing in based identification of linked vegetation index and sea surface central Australia. J. Arid Environ. 37:145-154. temperature anomaly areas from 1982-1990 for Africa, Austra- Gamon, J. A., Field, C. B., Goulden, M. L., Griffin, K. L., Hartley, lia and South America. Geophys. Res. Lett. 23:729-732.
  6. A. E., Joel, G., Penuelas, J., and Valentini, R. (1995), Relation- Myneni, R. B., Ross, J., and Asrar, G. (1989), A review on the ships between NDVI, canopy structure, and photosynthesis theory of photon transport in leaf canopies. Agric. For. Mete- in three Californian vegetation types. Ecol. Applic. 5:28-41. orol. 45:1-153.
  7. Gao, B.-C., Heidebrecht, K. B., and Goetz, A. F. H. (1993), PeterJohn, W. T., and Schlesinger, W. H. (1991), Factors control- Derivation of scaled surface reflectance from AVIRIS data. ling denitrification in a Chihuanhuan Desert ecosystem. Soil Remote Sens. Environ. 44:165-178. Soc. Am. J. 55:1694-1701.
  8. Gausman, H. W. (1982), Visible light reflectance, transmittance, Privette, J. L., Conel, J. E., Thome, K. J., Rango, A., Asner, G. P., and absorptance of differently pigmented cotton leaves. Re- Raman, A. F., Walter-Shea, E., and Olson, R. J. (2000) The mote Sens. Environ. 13:233-238. Prototype Validation Exercise (PROVE) for EOS land and Goetz, A. F. H., Boardman, J. W., Kindel, B., and Heidebrecht, atmosphere products. Remote Sens. Environ. in press.
  9. K. B. (1997), Atmospheric corrections: On deriving surface Privette, J. L., Emery, W. J., and Schimel, D. S. (1996), Inversion reflectance from hyperspectral imagers. Proc. SPIE 3118: of a vegetation reflectance model with NOAA AVHRR data. 14-22. Remote Sens. Environ. 58:187-200.
  10. Graetz, R. D., and Gentle, M. R. (1982), The relationships be- Privette, J. L., Myneni, R. B., Tucker, C. J., and Emery, W. J. tween reflectance in the Landsat wavebands and the composi- (1994), Invertibility of a 1-D discrete ordinates canopy reflec- tion of an Australian semi-arid shrub rangeland. Photogramm. tance model. Remote Sens. Environ. 48:89-105.
  11. Eng. Remote Sens. 11:2253-2267.
  12. Qin, W. (1993), Modeling bidirectional reflectance of multicom- Graetz, R. D., Pech, R. P., and Davis, A. W. (1988), The assess- ponent vegetation canopies. Remote Sens. Environ. 46:235-245. ment and monitoring of sparsely vegetated rangelands using Ray, T. W., and Murray, B. C. (1996), Nonlinear spectral mixing calibrated Landsat data. Int. J. Remote Sens. 9:1201-1222. in desert vegetation. Remote Sens. Environ. 55:59-71.
  13. Huete, A. R. (1988), A soil-adjusted vegetation index (SAVI). Running, S. W., Loveland, T. R., and Pierce, L. L. (1994), A Remote Sens. Environ. 25:295-309. vegetation classification logic based on remote sensing for use
  14. Iaquinta, J., and Pinty, B. (1994), Adaptation of a bidirectional in global biogeochemical models. Ambio 23:77-89. reflectance model including the hotspot to an optically thin Schlesinger, W. H., and Gramenopoulos, N. (1996), Archival canopy. In Proc. Sixth Int'l Symp. Phys. Measur. and Signa- photographs show no climate-induced changes in woody vege- tures Remote Sens., pp. 683-690. tation in the Sudan, 1943-1994. Global Change Biol. 2: Kennedy, R. E., Cohen, W. B., and Takao, G. (1997), Empirical 137-141. methods to compensate for a view-angle-dependent bright- Schlesinger, W. H., Raikes, J. A., Hartley, A. E., and Cross, ness gradient in AVIRIS imagery. Remote Sens. Environ. A. F. (1996), On the spatial pattern of soil nutrients in desert 62:277-286. ecosystems. Ecology 77:364-374.
  15. Korobov, R. M., and Railyan, V. Y. (1993), Canonical correlation Schlesinger, W. H., Reynolds, J. R., Cunningham, G. L., Huen- relationships among spectral and phytometric variables for neke, L. F., Jarrell, W. M., Virginia, R. A., and Whitford, twenty winter wheat fields. Remote Sens. Environ. 43:1-11.
  16. W. G. (1990), Biological feedbacks in global desertification.
  17. Kuusk, A. (1991), The hot spot effect in plant canopy reflectance. Science 247:1043-1048.
  18. In Photon-Vegetation Interactions: Applications in Optical Re- Scholes, R. J., and Archer, S. R. (1997), Tree-grass interactions mote Sensing and Plant Ecology (R. B. Myneni and J. Ross, in savannas. Ann. Rev. Ecol. Sys. 28:514-544.
  19. Eds.), Springer-Verlag, New York, pp. 9-44.
  20. Sellers, P. J. (1993), Remote sensing of the land surface for studies
  21. Li, X., Strahler, A. H., and Woodcock, C. E. (1995), A hybrid of global change: Models, algorithms, experiments, NASA geometric optical-radiative transfer approach for modeling ISLSCP Workshop Report, NASA Goddard Space Flight Cen- albedo and directional reflectance of discontinuous canopies. ter, Greenbelt, MD.
  22. IEEE Trans. Geosci. Remote Sens. 33:466-480.
  23. Smith, M. O., Ustin, S. L., and Adams, J. B. (1990), Vegetation
  24. Martonchik, J. V., and Diner, D. J. (1992), Retrieval of aerosol in deserts: I. A regional measure of abundance from multispec- optical properties from multi-angle satellite imagery. IEEE tral images. Remote Sens. Environ. 31:1-15.
  25. Trans. Geosci. Remote Sens. 30:223-235.
  26. Matthews, E. A. (1983), Global vegetation and land use: New Tanre, D., Holben, B. N., and Kaufman, Y. J., (1992), Atmo- spheric correction algorithms for NOAA-AVHRR products: Wessman, C. A., Bateson, C. A., and Benning, T. L. (1997), Detecting fire and grazing patterns in tallgrass prairie using Theory and application. IEEE Trans. Geosci. Remote Sens. 30:231-248. spectral mixture analysis. Ecol. Appl. 7:493-511.
  27. White, M. A., Asner, G. P., Nemani, R. R., Privette, J. L., and van Leeuwen, W. J. D., and Huete, A. R. (1996), Effects of standing litter on the biophysical interpretation of plant cano- Running, S. W. (2000), Monitoring fractional cover and leaf area index in arid ecosystems: Digital camera, radiation trans- pies with spectral indices. Remote Sens. Environ. 55:123-134.
  28. van Leeuwen, W. J. D., Huete, A. R., Walthall, C. L., Prince, S. mittance, and laser altimetry results. Remote Sens. Environ. 74:45-57.
  29. D., Begue, A., and Roujean, J. L. (1997), Deconvolution of remotely sensed spectral mixtures for retrieval of LAI, fAPAR Woolley, J. T. (1971), Reflectance and transmittance of light by leaves. Plant Physiol. 47:656-662.
  30. and soil brightness. J. Hydrol. 188:697-724.