Corrigendum to: Lack of complex N-glycans on HIV-1 envelope glycoproteins preserves protein conformation and entry function (vol 401, pg 236, 2010) (original) (raw)

The N-linked glycan of the V3 region of HIV-1 gp120 and CXCR4-dependent multiplication of a human immunodeficiency virus type 1 lymphocyte-tropic variant

FEBS Letters, 1999

We have previously shown that an N-glycosylation site of N306 of HIV-1 gp120 is not necessary for the HIV-1 infectivity but protects HIV-1 from neutralising antibodies. In contrast Nakayama et al. [FEBS Lett. (1998) 426, 367^372], using a virus with an identical V3 region, suggested that elimination of this particular glycan reduced the ability of T-tropic HIV to bind to CXCR4 and hence its ability to infect T cell lines. We therefore re-examined the ability of a mutant virus, lacking the N306 glycan, to replicate in various types of cells and found no change in co-receptor usage for mutant virus. The ability of mutant virus to replicate or to induce syncytia in infected cells was similar to that of wild type virus. These results corroborate our original observation, confirming that the induced mutation in the N306 glycosylation site neither impairs nor improves the ability of mutant virus to replicate in permissive cells.

Replicative Function and Neutralization Sensitivity of Envelope Glycoproteins from Primary and T-Cell Line-Passaged Human Immunodeficiency Virus Type 1 Isolates

1995

immunodeficiency virus type 1 isolates. primary and T-cell line-passaged human sensitivity of envelope glycoproteins from Replicative function and neutralization http://jvi.asm.org/content/69/7/4413 Updated information and services can be found at: These include: CONTENT ALERTS more» cite this article), Receive: RSS Feeds, eTOCs, free email alerts (when new articles http://journals.asm.org/site/misc/reprints.xhtml Information about commercial reprint orders: http://journals.asm.org/site/subscriptions/ To subscribe to to another ASM Journal go to: on December 18, 2013 by guest http://jvi.asm.org/ Downloaded from on December 18, 2013 by guest

Lack of complex N-glycans on HIV1 envelope glycoproteins preserves protein conformation and entry function

Virology, 2010

The HIV-1 envelope glycoprotein complex (Env) is the focus of vaccine development aimed at eliciting humoral immunity. Env's extensive and heterogeneous N-linked glycosylation affects folding, binding to lectin receptors, antigenicity and immunogenicity. We characterized recombinant Env proteins and virus particles produced in mammalian cells that lack N-acetylglucosaminyltransferase I (GnTI), an enzyme necessary for the conversion of oligomannose N-glycans to complex N-glycans. Carbohydrate analyses revealed that trimeric Env produced in GnTI -/cells contained exclusively oligomannose N-glycans, with incompletely trimmed oligomannose glycans predominating. The folding and conformation of Env proteins was little affected by the manipulation of the glycosylation. Viruses produced in GnTI -/cells were infectious, indicating that the conversion to complex glycans is not necessary for Env entry function, although virus binding to the C-type lectin DC-SIGN was enhanced. Manipulating Env's N-glycosylation may be useful for structural and functional studies and for vaccine design.

Envelope Glycoprotein Incorporation, Not Shedding of Surface Envelope Glycoprotein (gp120/SU), Is the Primary Determinant of SU Content of Purified Human Immunodeficiency Virus Type 1 and Simian Immunodeficiency Virus

Journal of Virology, 2002

Human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) particles typically contain small amounts of the surface envelope protein (SU), and this is widely believed to be due to shedding of SU from mature virions. We purified proteins from HIV-1 and SIV isolates using procedures which allow quantitative measurements of viral protein content and determination of the ratios of gag-and env-encoded proteins in virions. All of the HIV-1 and most of the SIV isolates examined contained low levels of envelope proteins, with Gag:Env ratios of approximately 60:1. Based on an estimate of 1,200 to 2,500 Gag molecules per virion, this corresponds to an average of between 21 and 42 SU molecules, or between 7 and 14 trimers, per particle. In contrast, some SIV isolates contained levels of SU at least 10-fold greater than SU from HIV-1 isolates.

Incorporation of High Levels of Chimeric Human Immunodeficiency Virus Envelope Glycoproteins into Virus-Like Particles

Journal of Virology, 2007

To test factors that influence HIV Env particle incorporation, we generated a series of chimeric gene constructs in which the coding sequences for the signal peptide (SP), transmembrane (TM), and cytoplasmic tail (CT) domains of HIV-1 Env were replaced with those of other viral or cellular proteins individually or in combination. All constructs tested were derived from HIV type 1 (HIV-1) Con-S ⌬CFI gp145, which itself was found to be incorporated into VLPs much more efficiently than full-length Con-S Env.

A single amino acid change in the cytoplasmic domain of the simian immunodeficiency virus transmembrane molecule increases envelope glycoprotein expression on infected cells

Journal of Virology, 1995

68:5509-5522, 1994 [Erratum 68:7665-7667]). Compared with BK28, CP-MAC exhibited a number of changes in its envelope glycoproteins, including a highly stable association between the external (SU) and transmembrane (TM) molecules, a more rapid electrophoretic mobility of TM, and, of particular interest, a marked increase in the level of envelope protein expression on the surface of infected cells. These changes were shown to be associated with 11 coding mutations in the env gene (5 in SU and 6 in TM). In this report, we demonstrate that a single amino acid mutation of a Tyr to a Cys at position 723 (Y723C) in the TM cytoplasmic domain of CP-MAC is the principal determinant for the increased expression of envelope glycoproteins on the cell surface. When introduced into the env gene of BK28, the Y723C mutation produced up to a 25-fold increase in the levels of SU and TM on chronically infected cells, as determined by fluorescence-activated cell sorter analysis with monoclonal and polyclonal antibodies. A similar effect was observed when a Tyr-to-Cys change was introduced at the analogous position (amino acid 721) in the SIVmac239 molecular clone, which, unlike BK28 does not contain a premature stop codon in its TM cytoplasmic tail. Substituting other amino acids, including Ala, Ile, and Ser, at this position produced increases in surface envelope glycoproteins that were similar to that observed for the Cys substitution, while a Tyr-to-Phe mutation produced a smaller increase. These results could not be accounted for by differences in the kinetics or efficiency of envelope glycoprotein processing or by shedding of SU from infected cells. However, immunoelectron microscopy demonstrated that the Y723C mutation in BK28 produced a striking redistribution of cell surface envelope molecules from localized patches to a diffuse pattern that covered the entire plasma membrane. This finding suggests that mutation of a Tyr residue in the simian immunodeficiency virus TM cytoplasmic domain may disrupt a structural element that can modulate envelope glycoprotein expression on the surface of infected cells.

Modification of virus infectivity by cytoplasmic tail of HIV-1 TM protein

Virus Research, 2001

Envelope glycoprotein incorporation is an essential process in formation of infectious particles of human immunodeficiency virus. Accumulated data have indicated that the cytoplasmic tail of Env gp41 is required for efficient incorporation. By analyzing mutant viruses with truncated cytoplasmic tails, we found that the domain was required in a cell-type-dependent manner for maintaining virus infectivity. Although the viruses with truncated cytoplasmic tails produced from HeLa, A3.01 and SupT1 cells showed a greatly reduced infectivity, those from SW480 and MT-4 cells retained a significant infectivity. To clarify the different effect of the cytoplasmic tail mutation on virus infectivity, we performed biochemical studies on the virions produced from HeLa and SW480 cells. Although the truncation of cytoplasmic tail appeared to reduce the Env incorporation in both cell lines, it caused a significant incorporation of Env precursor with HeLa cells. The results suggested that the cytoplasmic tail regulated selective incorporation of processed Env into virions in a cell-type-dependent manner.

Glycans Flanking the Hypervariable Connecting Peptide between the A and B Strands of the V1/V2 Domain of HIV-1 gp120 Confer Resistance to Antibodies That Neutralize CRF01_AE Viruses

PLOS ONE, 2015

Understanding the molecular determinants of sensitivity and resistance to neutralizing antibodies is critical for the development of vaccines designed to prevent HIV infection. In this study, we used a genetic approach to characterize naturally occurring polymorphisms in the HIV envelope protein that conferred neutralization sensitivity or resistance. Libraries of closely related envelope genes, derived from virus quasi-species, were constructed from individuals infected with CRF01_AE viruses. The libraries were screened with plasma containing broadly neutralizing antibodies, and neutralization sensitive and resistant variants were selected for sequence analysis. In vitro mutagenesis allowed us to identify single amino acid changes in three individuals that conferred resistance to neutralization by these antibodies. All three mutations created N-linked glycosylation sites (two at N136 and one at N149) proximal to the hypervariable connecting peptide between the C-terminus of the A strand and the N-terminus of the B strand in the four-stranded V1/V2 domain β-sheet structure. Although N136 has previously been implicated in the binding of broadly neutralizing monoclonal antibodies, this glycosylation site appears to inhibit the binding of neutralizing antibodies in plasma from HIV-1 infected subjects. Previous studies have reported that the length of the V1/V2 domain in transmitted founder viruses is shorter and possesses fewer glycosylation sites compared to viruses isolated from chronic infections. Our results suggest that vaccine immunogens based on recombinant envelope proteins from clade CRF01_AE viruses might be improved by inclusion of envelope proteins that lack these glycosylation sites. This strategy might improve the efficacy of the vaccines used in the partially PLOS ONE | are employees of Monogram successful RV144 HIV vaccine trial, where the two CRF01_AE immunogens (derived from the A244 and TH023 isolates) both possessed glycosylation sites at N136 and N149.