Prion-derived copper-binding peptide fragments catalyze the generation of superoxide anion in the presence of aromatic monoamines (original) (raw)

Free tyrosine and tyrosine-rich peptide-dependent superoxide generation catalyzed by a copper-binding, threonine-rich neurotoxic peptide derived from prion protein

Previously, generation of superoxide anion (O2 •-) catalyzed by Cu-binding peptides derived from human prion protein (model sequence for helical Cu-binding motif VNITKQHTVTTTT was most active) in the presence of catecholamines and related aromatic monoamines such as phenylethylamine and tyramine, has been reported [Kawano, T., Int J Biol Sci 2007; 3: 57-63]. The peptide sequence (corresponding to helix 2) tested here is known as threonine-rich neurotoxic peptide. In the present article, the redox behaviors of aromatic monoamines, 20 amino acids and prion-derived tyrosine-rich peptide sequences were compared as putative targets of the oxidative reactions mediated with the threonine-rich prion-peptide. For detection of O2 •-, an O2 •-specific chemiluminescence probe, Cypridina luciferin analog was used. We found that an aromatic amino acid, tyrosine (structurally similar to tyramine) behaves as one of the best substrates for the O2 •-generating reaction (conversion from hydrogen peroxide) catalyzed by Cu-bound prion helical peptide. Data suggested that phenolic moiety is required to be an active substrate while the presence of neither carboxyl group nor amino group was necessarily required. In addition to the action of free tyrosine, effect of two tyrosine-rich peptide sequences YYR and DYEDRYYRENMHR found in human prion corresponding to the tyrosine-rich region was tested as putative sub-strates for the threonine-rich neurotoxic peptide. YYR motif (found twice in the Y-rich region) showed 2-to 3-fold higher activity compared to free tyrosine. Comparison of Y-rich sequence consisted of 13 amino acids and its Y-to-F substitution mutant sequence revealed that the tyrosine-residues on Y-rich peptide derived from prion may contribute to the higher production of O2 •-. These data suggest that the tyrosine residues on prion molecules could be additional targets of the prion-mediated reactions through intra-or inter-molecular interactions. Lastly, possible mechanism of O2 •-generation and the impacts of such self-redox events on the conformational changes in prion are discussed.

A human prion protein peptide (PrP(59-91)) protects against copper neurotoxicity

Human cellular prion protein (PrP(C)) is involved in several neurodegenerative disorders; however, its normal function is unknown. We report here that a synthetic peptide corresponding to the four-octarepeat sequence of the PrP(C) (PrP(59-91)) protects hippocampal neurons against copper neurotoxic effects in vivo. Using a rat bilateral intrahippocampal injection model, we found that PrP(59-91) protects against copper-induced neurotoxicity, including a recovery in spatial learning performance and a reduced neuronal cell loss and astrogliosis. Previous studies from our laboratory indicated that a tryptophan (Trp) residue plays a key role in the reduction of copper(II) to copper(I); therefore several PrP(59-91) fragments lacking histidine (His) and Trp residues were tested for their capacity to protect from copper toxicity. A PrP(59-91) peptide lacking His residue shows as much neuroprotection as the native peptide; however, PrP(59-91) without Trp residues only partially protected against copper toxicity. The neuroprotective effect not only occurs with PrP(59-91), in fact a full neuroprotection was also observed using just one octamer of the N-terminal region of prion protein. We conclude that the N-terminal tandem octarepeat of the human PrP(C) protects neurons against copper toxicity by a differential contribution of the binding (His) and reducing (Trp) copper activities of PrP(59-91). Our results are consistent with the idea that PrP(C) function is related to copper homeostasis.

Copper-dependent functions for the prion protein

Molecular Biotechnology, 2002

Prion diseases such as bovine spongiform encephalopathy and Creutzfeldt-Jakob disease are fatal neurodegenerative diseases. These diseases are characterized by the conversion of a normal cellular protein, the prion protein, to an abnormal isoform that is thought to be responsible for both pathogenesis in the disease and the infectious nature of the disease agent. Understanding the biology and metabolism of the normal prion protein is therefore important for understanding the nature of these diseases. This review presents evidence for the normal function of the cellular prion protein, which appears to depend on its ability to bind copper (Cu). There is now considerable evidence that the prion protein is an antioxidant. Once the prion protein binds Cu, it may have an activity like that of a superoxide dismutase. Conversion of the prion protein to an abnormal isoform might lead to a loss of antioxidant protection that could be responsible for neurodegeneration in the disease.