Translocation of anthrax toxin: Lord of the rings (original) (raw)
Trojan horse or proton force: Finding the right partner(s) for toxin translocation
Neurotoxicity Research, 2006
Much is known about the structure function relationships of a large number of bacterial protein toxins, the nature of their cell surface receptors, and their enzymatic activities which lead to the inactivation of their respective cytosolic targets. Despite this wealth of knowledge a detailed understanding of the mechanisms which underlie translocation of the catalytic domain across the eukaryotic cell membrane to the cytosol, the penultimate event in the intoxication process, have been slow in developing. In the case of diphtheria toxin, two prominent hypotheses have been advanced to explain how the catalytic domain is translocated from the lumen of endocytic vesicles to the target cell cytosol. We discuss each of these hypotheses and provide an overview of recent observations that tend to favor a mechanism employing a Cytosolic Translocation Factor complex in the entry process. This facilitated mechanism of translocation appears to rely upon protein-protein interactions between conserved domains within the transmembrane domain of diphtheria toxin and host cell factors to effect delivery of the enzymatic moiety. We have recently identified a 10 amino acid motif in the transmembrane domain of diphtheria toxin that is conserved in anthrax Lethal and Edema Factors, as well as in botulinum neurotoxins A, C and D. Stable eukaryotic cell transfectants that express a peptide containing this motif become resistant to the toxin, and sensitivity is completely restored by co-expression of siRNA which inhibits peptide expression. Data obtained from use of the protein fusion toxin DAB389IL-2 in cytotoxicity assays using susceptible Hut 102/6TG and resistant transfectant Hut102/6TG-T1 cells, as well as pull down assays have led to the formulation of a working model of facilitated delivery of the diphtheria toxin catalytic domain to the cytosol of target cells which is discussed in detail.
New insights into the biological effects of anthrax toxins: linking cellular to organismal responses
Microbes and Infection, 2012
The anthrax toxins lethal toxin (LT) and edema toxin (ET) are essential virulence factors produced by Bacillus anthracis. These toxins act during two distinct phases of anthrax infection. During the first, prodromal phase, which is often asymptomatic, anthrax toxins act on cells of the immune system to help the pathogen establish infection. Then, during the rapidly progressing (or fulminant) stage of the disease bacteria disseminate via a hematological route to various target tissues and organs, which are typically highly vascularized. As bacteria proliferate in the bloodstream, LT and ET begin to accumulate rapidly reaching a critical threshold level that will cause death even when the bacterial proliferation is curtailed by antibiotics. During this final phase of infection the toxins cause an increase in vascular permeability and a decrease in function of target organs including the heart, spleen, kidney, adrenal gland, and brain. In this review, we examine the various biological effects of anthrax toxins, focusing on the fulminant stage of the disease and on mechanisms by which the two toxins may collaborate to cause cardiovascular collapse. We discuss normal mechanisms involved in maintaining vascular integrity and based on recent studies indicating that LT and ET cooperatively inhibit membrane trafficking to cellecell junctions we explore several potential mechanisms by which the toxins may achieve their lethal effects. We also summarize the effects of other potential virulence factors secreted by B. anthracis and consider the role of toxic factors in the evolutionarily recent emergence of this devastating disease.
Contribution of toxins to the pathogenesis of inhalational anthrax
Cellular Microbiology, 2007
Inhalational anthrax is a life-threatening infectious disease of considerable concern, especially as a potential bioterrorism agent. Progress is gradually being made towards understanding the mechanisms used by Bacillus anthracis to escape the immune system and to induce severe septicaemia associated with toxaemia and leading to death. Recent advances in fundamental research have revealed previously unsuspected roles for toxins in various cell types. We summarize here pathological data for animal models and macroscopic histological examination data from recent clinical records, which we link to the effects of toxins. We describe three major steps in infection: (i) an invasion phase in the lung, during which toxins have short-distance effects on lung phagocytes; (ii) a phase of bacillus proliferation in the mediastinal lymph nodes, with local effects of toxins; and (iii) a terminal, diffusion phase, characterized by a high blood bacterial load and by long-distance effects of toxins, leading to host death. The pathophysiology of inhalational anthrax thus involves interactions between toxins and various cell partners, throughout the course of infection. 'This experimental infection is not a true pulmonary disease, but serves to show how infective particles may set up a generalised infection after introduction through the uninjured respiratory tract .'
2001: a year of major advances in anthrax toxin research
Trends in Microbiology, 2002
Anthrax is an epizootic disease mainly affecting cattle and wild bovidae worldwide . On rare occasions it can be transmitted to humans, usually through contact with infected animals or their products. The etiological agent is Bacillus anthracis, a Grampositive rod-shaped bacterium able to form spores. These spores are the infectious agents and can enter the human body through skin lesions, ingestion or inhalation. Most commonly, spores enter via a skin lesion and germinate locally. The bacteria multiply quickly and secrete a toxin that causes a lesion characterized by edema and necrosis, which develops into a black eschar. The color and appearance of the lesion give the disease its name, as 'anthrax' is derived from the Greek word for coal. Although the lesion usually heals spontaneously, in rare instances the bacteria enter the systemic circulation and replicate to high densities. In these circumstances, the large amount of toxin released by the bacteria can cause shock, respiratory failure and death. When the spores are ingested or inhaled, they are engulfed by macrophages, germinate in central lymph nodes and usually spread systemically. Thus, gastrointestinal and inhalation anthrax are often fatal.
Journal of Molecular Biology, 2004
The two enzymatic components of anthrax toxin, lethal factor (LF) and edema factor (EF), are transported to the cytosol of mammalian cells by the third component, protective antigen (PA). A heptameric form of PA binds LF and/or EF and, under the acidic conditions encountered in endosomes, generates a membrane-spanning pore that is thought to serve as a passageway for these enzymes to enter the cytosol. The pore contains a 14-stranded transmembrane b-barrel that is too narrow to accommodate a fully folded protein, necessitating that LF and EF unfold, at least partly, in order to pass. Here, we describe the pH-dependence of the unfolding of LF N and EF N , the 30 kDa N-terminal PA-binding domains, and minimal translocatable units, of LF and EF. Equilibrium chemical denaturation studies using fluorescence and circular dichroism spectroscopy show that each protein unfolds via a fourstate mechanism: N4I4J4U. The acid-induced N/I transition occurs within the pH range of the endosome (pH 5-6). The I state predominates at lower pH values, and the J and U states are populated significantly only in the presence of denaturant. The I state is compact and has characteristics of a molten globule, as shown by its retention of significant secondary structure and its ability to bind an apolar fluorophore. The N/I transition leads to an overall 60% increase in buried surface area exposure. The J state is expanded significantly and has diminished secondary structure content. We analyze the different protonation states of LF N and EF N in terms of a linked equilibrium proton binding model and discuss the implications of our findings for the mechanism of acidic pH-induced translocation of anthrax toxin. Finally, analysis of the structure of the transmembrane b-barrel of PA shows that it can accommodate a-helix, and we suggest that the steric constraints and composition of the lumen may promote a-helix formation.
Proceedings of the National Academy of Sciences, 2013
Bacterial toxins have evolved successful strategies for coopting host proteins to access the cytosol of host cells. Anthrax lethal factor (LF) enters the cytosol through pores in the endosomal membrane formed by anthrax protective antigen. Although in vitro models using planar lipid bilayers have shown that translocation can occur in the absence of cellular factors, recent studies using intact endosomes indicate that host factors are required for translocation in the cellular environment. In this study, we describe a high-throughput shRNA screen to identify host factors required for anthrax lethal toxin-induced cell death. The cytosolic chaperonin complex chaperonin containing t-complex protein 1 (CCT) was identified, and subsequent studies showed that CCT is required for efficient delivery of LF and related fusion proteins into the cytosol. We further show that knockdown of CCT inhibits the acid-induced delivery of LF and the fusion protein LFN-Bla (N terminal domain of LF fused to...
The Journal of Biological Chemistry, 1989
Anthrax lethal toxin consists of two separate proteins, protective antigen and lethal factor (LF). Certain macrophages and a mouse macrophage-like cell line, J774A.1, are lysed by low concentrations of lethal toxin. In contrast, another macrophage cell line, IC-21, and all other cell types tested were resistant to this toxin. To discover the basis for this difference, each step in the intoxication process was examined. No differences between sensitive and resistant cells were found in receptor binding or proteolytic activation of protective antigen, steps that are required prior to LF binding. To determine whether resistance results from a defect in translocation to the cytosol, we introduced LF into J774A.1 and IC-21 cells and a nonmacrophage cell line (L6 myoblast) by osmotic lysis of pinocytic vesicles. Only J774A.1 cells were lysed; no effect was observed in IC-21 and L6 cells. These results suggest that resistant cells either lack the intracellular target of LF or fail to process LF to an active form. The relatively low potency of LF introduced into J774A.1 cells by osmotic lysis suggests that protective antigen may also be required at a stage subsequent to endocytosis.
Anthrax toxins: A weapon to systematically dismantle the host immune defenses
Molecular Aspects of Medicine, 2009
Successful colonization of the host by bacterial pathogens relies on their capacity to evade the complex and powerful defenses opposed by the host immune system, at least in the initial phases of infection. The two toxins of Bacillus anthracis, lethal toxin and edema toxin, appear to have been shaped by evolution to assist the microorganism in this crucial function, in
Oncotarget, 2017
Anthrax lethal toxin is a typical A-B type protein toxin secreted by Bacillus anthracis. Lethal factor (LF) is the catalytic A-subunit, a metalloprotease having MEKs as targets. LF relies on the cell-binding B-subunit, protective antigen (PA), to gain entry into the cytosol of target cells. PA binds to cell surface toxin receptors and is activated by furin protease to form an LF-binding-competent oligomer-PA pre-pore, which converts to a functional protein-conductive pore in the acidic endocytic vesicles, allowing translocation of LF into the cytosol. During PA pre-pore-to-pore conversion, the intermolecular salt bridge interactions between Lys397 and Asp426 on adjacent PA protomers play a critical role in positioning neighboring luminal Phe427 residues to form the Phe-clamp, an essential element of the PA functional pore. This essential intermolecular interaction affords the opportunity to create pairs of PA variants that depend on intermolecular complementation to form a functiona...