Daily infusion of melatonin entrains circadian activity rhythms in the diurnal rodent Arvicanthis ansorgei (original) (raw)
Related papers
The effect of exogenous melatonin (MEL) on the circadian system in nocturnal species has been extensively studied, but little is known about its chronobiotic effect in diurnal mammals. The present study investigated the effect of exogenous MEL on the circadian locomotor activity rhythm in the diurnal rodent Ar6icanthis ansorgei. Male animals (n= 34) were fitted with a subcutaneous catheter for daily infusion of MEL (1 h; 100 mg) and their running wheel activity was recorded. The results showed that administration of MEL to animals free-running in DD entrained their activity rhythm by phase advances at circadian time (CT) 10.62, and by phase delays at CT −0.40 (CT 0, activity onset). The range of entrainment was 17 and 11.5 min for advance and delay stimuli, respectively. Interestingly, in the nocturnal rat and the A. ansorgei, entrainment of the activity rhythm to exogenous MEL by phase advances occurs at exactly the same phase of the circadian cycle. In both nocturnal and diurnal species, the sensitivity window for exogenous MEL is located near the activity/rest transition points. It is concluded that the functional properties of entrainment to exogenous MEL are similar to those of other nonphotic stimuli. Furthermore, A. ansorgei might be an interesting animal model for studies on the chronobiotic effects of exogenous MEL in diurnal mammals including humans.
Journal of Pineal Research, 2007
Abstract: Melatonin is an essential component for circadian system function, whose daily plasma secretory rhythm is driven by the suprachiasmatic nucleus (SCN), contributing to the communication of temporal messages from the central circadian clock to all cells. Melatonin secretion peaks in the dark, regardless of whether animals are diurnal or nocturnal. To date, the precise mechanisms that explain how the circadian system is configured as nocturnal or diurnal remain unknown. The present study examines mid-day and midnight melatonin plasma levels and the influence of exogenous melatonin on the circadian system phasing of Octodon degus, a diurnal rodent, which exhibits nocturnal and diurnal chronotypes when free access to a wheel is provided. Plasma levels of melatonin were determined by RIA in blood samples taken from the jugular vein at mid-light (ML) and mid-dark (MD). Melatonin (0.5 mg/kg b.wt.) was orally administered in their drinking water for 30 days, 2 hr before the onset of darkness. The results showed that plasma melatonin levels and their qualitative effects, hypothermia and improved synchronization with no modification in the 24-hr wheel running activity (WR), were similar in both nocturnal and diurnal degus. Furthermore, melatonin can be used to improve the impaired circadian rhythmicity observed in aged animals, with no rebound effect after ceasing the treatment. It is concluded that plasma melatonin levels and the differential responses to melatonin do not seem to be responsible for nocturnal and diurnal chronotypes, and thus other mechanisms upstream, within, or downstream from the SCN should be investigated.
Melatonin-induced phase and dose responses in a diurnal mammal, Funambulus pennantii
Chronobiology International, 2020
Melatonin, an essential pineal hormone, acts as a marker of the circadian clock that regulates biological rhythms in animals. The effects of exogenous melatonin on the circadian system of nocturnal rodents have been extensively studied; however, there is a paucity of studies on the phase-resetting characteristics of melatonin in diurnal rodents. We studied the phase shifting effects of exogenous melatonin as a single melatonin injection (1 mg/kg) at various phases of the circadian cycle on the circadian locomotor activity rhythm in the palm squirrel, Funambulus pennantii. A phase response curve (PRC) was constructed. Adult male squirrels (N = 10) were entrained to a 12:12 h light-dark cycle (LD) in a climate-controlled chronocubicle with food and water provided ad libitum. After stable entrainment, squirrels were transferred to constant dark condition (DD) for free-running. Following stable free run, animals were administered a single dose of melatonin (1 mg/kg in 2% ethanol-phosphate buffered saline (PBS) solution) or vehicle (2% ethanol-PBS solution) at circadian times (CTs) 3 h apart to evoke phase shifts. The phase shifts elicited at various CTs were plotted to generate the PRC. A dose response curve was generated using four doses (0.5, 1, 2 and 4 mg/kg) administered at the CT of maximum phase advance. Melatonin evoked maximum phase advances at CT0 (1.23 ± 0.28 h) and maximum phase delays at CT15 (0.31 ± 0.09 h). In the dose response experiment, maximal phase shifts were evoked with 1 mg/kg. In contrast, no significant shifts were observed in control groups. Our study demonstrates that the precise timing and appropriate dose of melatonin administration is essential to maximize the amelioration of circadian rhythm-related disorders in a diurnal model.
Journal of Biosciences, 1996
The objective of this study was to assess whether melatonin accelerates the reentrainment of locomotor activity after 6 h of advance and delay phase shifts following exposure to LD 12:12 cycle (simulating jet-lag/shift work). An experimental group of adult male field mice Mus booduga were subjected to melatonin (1 mg/kg) through i.p. and the control group were treated with 50 % DMSO. The injections were administered on three consecutive days following 6h of phase advance and delay, at the expected time of "lights off'. The results show that melatonin accelerates the re-entrainment after phase advance (29%) when compared with control mice. In the 6 h phase delay study, the experimental mice (melatonin administered) take more cycles for re-entrainment (51%) than the control. Further, the results suggest that though melatonin may be useful for the treatment of jet-lag caused by eastward flight (phase advance) it may not be useful for westward flight (phase delay) jet-lag.
Melatonin entrains circadian rhythms in several species of rodents, but a role for melatonin as a Zeitgeber in the adult Syrian hamster is debated. The aim of this study was to define the conditions of daily programmed melatonin infusion in which an entrainment of the locomotor activity rhythm is obtained in adult male Syrian hamsters. The animals were pinealectomized, cannulated with a subcutaneous infusion system and submitted to dim red light conditions. They were initially daily infused with vehicle until free-running was established. Then, the animals were divided into three experimental groups, each group corresponding to a specific melatonin dose and infusion duration: (1) 10 mg melatonin/h for 5 h; (2) 30 mg melatonin/h for 5 h; and (3) 50 mg melatonin/h for 1 h. Of the total 64 hamsters, 37 hamsters fully entrained to the melatonin infusion regardless of whether the animals expressed during pre-treatment a free-running period (t )B/ or /24 h, 20 animals presented a transient entrainment and seven did not entrain. Of the 37 animals entrained, withdrawal of melatonin re-established free-running rhythms, although often with a different t compared with that observed during pre-treatment. These results indicate that after a long time of daily infusion, melatonin is able to entrain the free-running rhythm in adult Syrian hamster. The mechanism involved is not known, but the change in t observed after melatonin treatment in some animals suggests that melatonin, directly or indirectly, affects the functioning of the clock. # (P. Pévet). Behavioural Brain Research 133 (2002) 343 Á/350 www.elsevier.com/locate/bbr 0166-4328/02/$ -see front matter # 2002 Elsevier Science B.V. All rights reserved. PII: S 0 1 6 6 -4 3 2 8 ( 0 2 ) 0 0 0 1 7 -7
Melatonin secretion in the Mashona mole-rat, Cryptomys darlingi—influence of light on rhythmicity
Physiology & Behavior, 2005
The hormone melatonin is synthesised and secreted from the pineal gland in darkness and triggers the daily and seasonal timing of various physiological and behavioural processes. The Mashona mole-rat, Cryptomys darlingi, lives in subterranean burrows that are completely sealed and is therefore rarely, if ever, exposed to light under natural conditions. Hence, this species is of particular interest for studies on rhythms of melatonin secretion. We investigated how plasma melatonin concentrations of the Mashona mole-rat responded to exposure to a long-term standard photoperiod of 12 h light, 12 h dark (12:12 LD), constant light (LL) and constant dark (DD). In addition, we examined whether plasma melatonin concentration was coupled to locomotor activity. Mashona mole-rats displayed rhythms of plasma melatonin concentration that appeared entrained to the standard LD photoperiod, suggesting that the mole-rat is capable of perceiving and entraining to this photic zeitgeber. Furthermore, under chronic constant lighting conditions (DD, LL), circadian rhythms in plasma melatonin concentration were observed, suggesting the possible existence of an endogenous rhythm. Light suppressed melatonin secretion, but constant light did not abolish the rhythm of plasma melatonin concentration. Between active and non-active animals, no difference in plasma melatonin concentration was found for any of the sequential photoperiods (LD1 DD, LD2, LL), tentatively suggesting that the rhythm of melatonin secretion is uncoupled from that of locomotor activity. D
Comparative effects of a melatonin agonist on the circadian system in mice and Syrian hamsters
Brain Research, 1997
S-20098 has potent and specific agonist properties on melatonin receptors both in vitro and in vivo. Behavioral studies on rodents already showed that repeated intraperitoneal administration of S-20098 could dose-dependently alter the functioning of the circadian clock. To determine whether single administration of S-20098 could alter the circadian rhythms of rodents, we first used the Ž . Ž . phase-response curve PRC approach in two different species: Syrian hamsters and mice C3HrHeJ . Our results show that the shape, circadian times and extent of the PRC to S-20098 look very similar in mice and hamsters. In both species, the phase advance portion of the PRC to S-20098 is limited to a 3 h window preceding the onset of locomotor activity, but the magnitude of phase shifts is larger in mice. We also tested the phase shifting effects of increasing doses of S-20098 during the interval of maximal sensitivity to this compound. Treatment with S-20098 induces dose-dependent phase shifts, with maximal shifts observed after injections of 20 and 25 mgrkg S-20098 i.p., respectively, in mice and hamsters. Those results are in agreement with the limited distribution of melatonin-binding sites within the circadian clock of adult Syrian hamsters, as compared to other rodents. q 1997 Elsevier Science B.V.
2015
Melatonin is known to shift the phase of the locomotor activity rhythm in the field mouse Mus booduga in accordance with a type-I phase response curve (PRC), with phase delays during the subjective day and phase advances during late subjective night and the early subjective day. At CT4 (circadian time 4; i.e. 16 hr. after activity onset) and CT22 of the circadian cycle, a single dose of melatonin (1 mg/kg) is known to evoke maximum delay and maximum advance phase-shifts, respec-tively. We investigated the dose-dependent responses of the circadian pacemaker of these mice to a single dose of melatonin at the times for maximum delay and maximum advance. The circadian pacemaker responsible for the locomotor activity rhythm in these mice responded to various doses of melatonin in a dose-dependent manner with the magnitude of phase shifts increasing with dose.
Sleep Medicine Reviews, 2005
Melatonin, hormone of the pineal gland, is concerned with biological timing. It is secreted at night in all species and in ourselves is thereby associated with sleep, lowered core body temperature, and other night time events. The period of melatonin secretion has been described as 'biological night'. Its main function in mammals is to 'transduce' information about the length of the night, for the organisation of daylength dependent changes, such as reproductive competence. Exogenous melatonin has acute sleepiness-inducing and temperature-lowering effects during 'biological daytime', and when suitably timed (it is most effective around dusk and dawn) it will shift the phase of the human circadian clock (sleep, endogenous melatonin, core body temperature, cortisol) to earlier (advance phase shift) or later (delay phase shift) times. The shifts induced are sufficient to synchronise to 24 h most blind subjects suffering from non-24 h sleep-wake disorder, with consequent benefits for sleep. Successful use of melatonin's chronobiotic properties has been reported in other sleep disorders associated with abnormal timing of the circadian system: jetlag, shiftwork, delayed sleep phase syndrome, some sleep problems of the elderly. No longterm safety data exist, and the optimum dose and formulation for any application remains to be clarified.