Insights into Eukaryotic Primer Synthesis from Structures of the p48 Subunit of Human DNA Primase (original) (raw)
ø29 DNA polymerase requires the N-terminal domain to bind terminal protein and DNA primer substrates
Veronica Truniger
Journal of Molecular Biology, 1998
View PDFchevron_right
Structural insight into the substrate specificity of DNA Polymerase μ
Andrea Moon
Nature Structural & Molecular Biology, 2006
View PDFchevron_right
The structure of a protein primer–polymerase complex in the initiation of genome replication
Armando Arias
Embo Journal, 2006
View PDFchevron_right
Structure of a bifunctional DNA primase-polymerase
Georg Lipps
Nature Structural & Molecular Biology, 2004
View PDFchevron_right
Shared active site architecture between the large subunit of eukaryotic primase and DNA photolyase
Rajika L Perera
PloS one, 2010
View PDFchevron_right
Crystal structure of the C-terminal domain of human DNA primase large subunit: Implications for the mechanism of the primase-polymerase α switch
Vinod Agarkar
Cell Cycle, 2011
View PDFchevron_right
Structures of human primase reveal design of nucleotide elongation site and mode of Pol α tethering
Rajika L Perera
Proceedings of the National Academy of Sciences of the United States of America, 2013
View PDFchevron_right
29 DNA Polymerase Residue Leu384, Highly Conserved in Motif B of Eukaryotic Type DNA Replicases, Is Involved in Nucleotide Insertion Fidelity
Veronica Truniger
Journal of Biological Chemistry, 2003
View PDFchevron_right
Insight into the Catalytic Mechanism of DNA Polymerase β: Structures of Intermediate Complexes † , ‡
Michael Chan
Biochemistry, 2001
View PDFchevron_right
Structure of the Catalytic Core of S. cerevisiae DNA Polymerase
Jose Trincao
Molecular Cell, 2001
View PDFchevron_right
DNA Polymerases: An Insight into Their Active Sites and Catalytic Mechanism
Peramachi Palanivelu
International Journal of Biochemistry Research and Review, 2013
View PDFchevron_right
Structure and mechanism of human PrimPol, a DNA polymerase with primase activity
Olga Rechkoblit
Science advances, 2016
View PDFchevron_right
Control of complex formation of DNA polymerase α–primase and cell-free DNA replication by the C-terminal amino acids of the largest subunit p180
Heinz Peter Nasheuer
FEBS Letters, 2002
View PDFchevron_right
Escherichia coli DNA Polymerase I (Klenow Fragment) Uses a Hydrogen-bonding Fork from Arg668 to the Primer Terminus and Incoming Deoxynucleotide Triphosphate to Catalyze DNA Replication
Maureen Blandino
Journal of Biological Chemistry, 2004
View PDFchevron_right
Insight into the Catalytic Mechanism of DNA Polymerase beta : Structures of Intermediate Complexes
Alexander Showalter
Biochemistry, 2001
View PDFchevron_right
Nucleotide-Induced DNA Polymerase Active Site Motions Accommodating a Mutagenic DNA Intermediate
Vinod Batra
Structure, 2005
View PDFchevron_right
DNA footprinting studies of the complex formed by the T4 DNA polymerase holoenzyme at a primer-template junction
Bruce Alberts
Journal of Biological Chemistry, 1991
View PDFchevron_right
Significance of the O-Helix Residues of Escherichia coli DNA Polymerase I in DNA Synthesis: Dynamics of the dNTP Binding Pocket †
Virendra Pandey
Biochemistry, 1996
View PDFchevron_right
Structures to complement the archaeo-eukaryotic primases catalytic cycle description: What's next?
Georg Lipps
Computational and Structural Biotechnology Journal, 2015
View PDFchevron_right
Structure of the Catalytic Core of S. cerevisiae DNA Polymerase: Implications for Translesion DNA Synthesis
Jose Trincao
Molecular Cell, 2001
View PDFchevron_right
Structure and mechanism of DNA polymerases
Paul Rothwell
Advances in protein chemistry, 2005
View PDFchevron_right
ø29 DNA polymerase residue Lys383, invariant at motif B of DNA-dependent polymerases, is involved in dNTP binding
Luis Blanco
Journal of Molecular Biology, 1997
View PDFchevron_right
Perspective: pre-chemistry conformational changes in DNA polymerase mechanisms
Tamar Schlick
Theoretical Chemistry Accounts, 2012
View PDFchevron_right
The helix bundle domain of primase RepB’ is required for dinucleotide formation and extension
Christoph Weise
View PDFchevron_right
The interaction of synthetic templates with eukaryotic DNA primase
Rashid Anarbaev
European Journal of …, 1995
View PDFchevron_right
Phe 771 of Escherichia coli DNA Polymerase I (Klenow Fragment) Is the Major Site for the Interaction with the Template Overhang and the Stabilization of the Pre-Polymerase Ternary Complex †
Aashish Srivastava
Biochemistry, 2003
View PDFchevron_right
Primase-polymerases: how to make a primer from scratch
Katerina Bednarova
Bioscience Reports
View PDFchevron_right
An aspartic acid residue in TPR-1, a specific region of protein-priming DNA polymerases, is required for the functional interaction with primer terminal protein
Juan Méndez
Journal of Molecular Biology, 2000
View PDFchevron_right
Dual Role of φ29 DNA Polymerase Lys529 in Stabilisation of the DNA Priming-Terminus and the Terminal Protein-Priming Residue at the Polymerisation Site
Miguel angel Segura vega
PLoS ONE, 2013
View PDFchevron_right
Insights into eukaryotic DNA priming from the structure and functional interactions of the 4Fe-4S cluster domain of human DNA primase
Brandt F Eichman
View PDFchevron_right
Crystal Structure of a Y-Family DNA Polymerase in Action
Wei Yang
Cell, 2001
View PDFchevron_right
Mechanism of protein-primed template-independent DNA synthesis by Abi polymerases
Krzysztof Skowronek
Nucleic Acids Research, 2022
View PDFchevron_right
Structure of the catalytic core of S. cerevisiae DNA polymerase eta: implications for translesion DNA synthesis
Jose Trincao
Molecular cell, 2001
View PDFchevron_right
Structural Insights into the Post-Chemistry Steps of Nucleotide Incorporation Catalyzed by a DNA Polymerase
Rajan Vyas
Journal of the American Chemical Society, 2017
View PDFchevron_right
Prokaryotic DNA polymerase I: evolution, structure, and “base flipping” mechanism for nucleotide selection
Lawrence Loeb
Journal of Molecular Biology, 2001
View PDFchevron_right