Insights into Eukaryotic Primer Synthesis from Structures of the p48 Subunit of Human DNA Primase (original) (raw)

ø29 DNA polymerase requires the N-terminal domain to bind terminal protein and DNA primer substrates

Veronica Truniger

Journal of Molecular Biology, 1998

View PDFchevron_right

Structural insight into the substrate specificity of DNA Polymerase μ

Andrea Moon

Nature Structural & Molecular Biology, 2006

View PDFchevron_right

The structure of a protein primer–polymerase complex in the initiation of genome replication

Armando Arias

Embo Journal, 2006

View PDFchevron_right

Structure of a bifunctional DNA primase-polymerase

Georg Lipps

Nature Structural & Molecular Biology, 2004

View PDFchevron_right

Shared active site architecture between the large subunit of eukaryotic primase and DNA photolyase

Rajika L Perera

PloS one, 2010

View PDFchevron_right

Crystal structure of the C-terminal domain of human DNA primase large subunit: Implications for the mechanism of the primase-polymerase α switch

Vinod Agarkar

Cell Cycle, 2011

View PDFchevron_right

Structures of human primase reveal design of nucleotide elongation site and mode of Pol α tethering

Rajika L Perera

Proceedings of the National Academy of Sciences of the United States of America, 2013

View PDFchevron_right

29 DNA Polymerase Residue Leu384, Highly Conserved in Motif B of Eukaryotic Type DNA Replicases, Is Involved in Nucleotide Insertion Fidelity

Veronica Truniger

Journal of Biological Chemistry, 2003

View PDFchevron_right

Insight into the Catalytic Mechanism of DNA Polymerase β: Structures of Intermediate Complexes † , ‡

Michael Chan

Biochemistry, 2001

View PDFchevron_right

Structure of the Catalytic Core of S. cerevisiae DNA Polymerase

Jose Trincao

Molecular Cell, 2001

View PDFchevron_right

DNA Polymerases: An Insight into Their Active Sites and Catalytic Mechanism

Peramachi Palanivelu

International Journal of Biochemistry Research and Review, 2013

View PDFchevron_right

Structure and mechanism of human PrimPol, a DNA polymerase with primase activity

Olga Rechkoblit

Science advances, 2016

View PDFchevron_right

Control of complex formation of DNA polymerase α–primase and cell-free DNA replication by the C-terminal amino acids of the largest subunit p180

Heinz Peter Nasheuer

FEBS Letters, 2002

View PDFchevron_right

Escherichia coli DNA Polymerase I (Klenow Fragment) Uses a Hydrogen-bonding Fork from Arg668 to the Primer Terminus and Incoming Deoxynucleotide Triphosphate to Catalyze DNA Replication

Maureen Blandino

Journal of Biological Chemistry, 2004

View PDFchevron_right

Insight into the Catalytic Mechanism of DNA Polymerase beta : Structures of Intermediate Complexes

Alexander Showalter

Biochemistry, 2001

View PDFchevron_right

Nucleotide-Induced DNA Polymerase Active Site Motions Accommodating a Mutagenic DNA Intermediate

Vinod Batra

Structure, 2005

View PDFchevron_right

DNA footprinting studies of the complex formed by the T4 DNA polymerase holoenzyme at a primer-template junction

Bruce Alberts

Journal of Biological Chemistry, 1991

View PDFchevron_right

Significance of the O-Helix Residues of Escherichia coli DNA Polymerase I in DNA Synthesis: Dynamics of the dNTP Binding Pocket †

Virendra Pandey

Biochemistry, 1996

View PDFchevron_right

Structures to complement the archaeo-eukaryotic primases catalytic cycle description: What's next?

Georg Lipps

Computational and Structural Biotechnology Journal, 2015

View PDFchevron_right

Structure of the Catalytic Core of S. cerevisiae DNA Polymerase: Implications for Translesion DNA Synthesis

Jose Trincao

Molecular Cell, 2001

View PDFchevron_right

Structure and mechanism of DNA polymerases

Paul Rothwell

Advances in protein chemistry, 2005

View PDFchevron_right

ø29 DNA polymerase residue Lys383, invariant at motif B of DNA-dependent polymerases, is involved in dNTP binding

Luis Blanco

Journal of Molecular Biology, 1997

View PDFchevron_right

Perspective: pre-chemistry conformational changes in DNA polymerase mechanisms

Tamar Schlick

Theoretical Chemistry Accounts, 2012

View PDFchevron_right

The helix bundle domain of primase RepB’ is required for dinucleotide formation and extension

Christoph Weise

View PDFchevron_right

The interaction of synthetic templates with eukaryotic DNA primase

Rashid Anarbaev

European Journal of …, 1995

View PDFchevron_right

Phe 771 of Escherichia coli DNA Polymerase I (Klenow Fragment) Is the Major Site for the Interaction with the Template Overhang and the Stabilization of the Pre-Polymerase Ternary Complex †

Aashish Srivastava

Biochemistry, 2003

View PDFchevron_right

Primase-polymerases: how to make a primer from scratch

Katerina Bednarova

Bioscience Reports

View PDFchevron_right

An aspartic acid residue in TPR-1, a specific region of protein-priming DNA polymerases, is required for the functional interaction with primer terminal protein

Juan Méndez

Journal of Molecular Biology, 2000

View PDFchevron_right

Dual Role of φ29 DNA Polymerase Lys529 in Stabilisation of the DNA Priming-Terminus and the Terminal Protein-Priming Residue at the Polymerisation Site

Miguel angel Segura vega

PLoS ONE, 2013

View PDFchevron_right

Insights into eukaryotic DNA priming from the structure and functional interactions of the 4Fe-4S cluster domain of human DNA primase

Brandt F Eichman

View PDFchevron_right

Crystal Structure of a Y-Family DNA Polymerase in Action

Wei Yang

Cell, 2001

View PDFchevron_right

Mechanism of protein-primed template-independent DNA synthesis by Abi polymerases

Krzysztof Skowronek

Nucleic Acids Research, 2022

View PDFchevron_right

Structure of the catalytic core of S. cerevisiae DNA polymerase eta: implications for translesion DNA synthesis

Jose Trincao

Molecular cell, 2001

View PDFchevron_right

Structural Insights into the Post-Chemistry Steps of Nucleotide Incorporation Catalyzed by a DNA Polymerase

Rajan Vyas

Journal of the American Chemical Society, 2017

View PDFchevron_right

Prokaryotic DNA polymerase I: evolution, structure, and “base flipping” mechanism for nucleotide selection

Lawrence Loeb

Journal of Molecular Biology, 2001

View PDFchevron_right