Lithological and structural evolution of the northern sector of Dukhan anticline, Qatar, during the early Tertiary: with special reference to sequence stratigraphic bounding surfaces (original) (raw)

Early Tertiary sediments are widely exposed in Qatar and only in coastal areas and a few places inland do Holocene deposits mask them. The variable resistance to weathering of the Tertiary sediments is responsible for the general low-relief landscape interspersed with flat-topped hills, the most prominent of which are in western Qatar where they are the surface expression of the Dukhan anticline. The early Tertiary was a time of shallow-marine sedimentation and several transgressive and regressive cycles occurred. Sedimentation began on a dolomitic carbonate shelf, which gave way to a mixed carbonate-siliciclastic shelf that became increasingly calcitic. Coarsening-upward sequences with fine-grained muddy sediments at the base and grainstones and boundstones on top attested to a cyclic change in the energy regime. Small-scale cycles and major unconformities resulted from eustatic sea-level changes. In the Dukhan study area, the most prominent sequence boundary was near the Ypresian-Lutetian boundary. Following this hiatus, a Lutetian transgressive system tract evolved that was terminated by a maximum flooding surface correlated with the named MFS Pg20. Minor unconformities and NE-trending faults of post-Miocene age resulted from the interplay of local diapiric salt movements in the Dukhan anticline and a regionally changing stress field. Extensional faulting was succeeded by a compressional phase that caused the reactivation of some normal faults as steeply dipping reverse faults. Diagenetic processes and the pervasive etching of the landscape formed ferrous, siliceous, and gypsiferous duricrusts. Phosphate was reworked and concentrated above the Ypresian-Lutetian unconformity. Ferricretes were derived from iron-bearing phyllosilicates and disulfides. Ferric iron-oxide hydrates were the result of oxidizing conditions but their parent material furnished evidence of less-oxygenated conditions and a rising sea level during the Lutetian transgression. The studies provided information on the economic potential of aggregates, clay, hydraulic binders, and building stones, and the prediction of subsidence-prone areas.

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.