A NOTE ON VARIOUS TYPES OF CONES AND FIXED POINT RESULTS IN CONE METRIC SPACES (original) (raw)

Topological Vector Space-Valued Cone Metric Spaces and Fixed Point Theorems

We develop the theory of topological vector space valued cone metric spaces with nonnormal cones. We prove three general fixed point results in these spaces and deduce as corollaries several extensions of theorems about fixed points and common fixed points, known from the theory of normed-valued cone metric spaces. Examples are given to distinguish our results from the known ones.

On cone metric spaces: A survey

Nonlinear Analysis: Theory, Methods & Applications, 2011

Using an old M. Krein's result and a result concerning symmetric spaces from [S. Radenović, Z. Kadelburg, Quasi-contractions on symmetric and cone symmetric spaces, Banach J. Math. Anal. 5 (1) (2011), 38-50], we show in a very short way that all fixed point results in cone metric spaces obtained recently, in which the assumption that the underlying cone is normal and solid is present, can be reduced to the corresponding results in metric spaces. On the other hand, when we deal with non-normal solid cones, this is not possible. In the recent paper [M.A. Khamsi, Remarks on cone metric spaces and fixed point theorems of contractive mappings, Fixed Point Theory Appl. 2010, 7 pages, Article ID 315398, doi:10.1115/2010/315398] the author claims that most of the cone fixed point results are merely copies of the classical ones and that any extension of known fixed point results to cone metric spaces is redundant; also that underlying Banach space and the associated cone subset are not necessary. In fact, Khamsi's approach includes a small class of results and is very limited since it requires only normal cones, so that all results with non-normal cones (which are proper extensions of the corresponding results for metric spaces) cannot be dealt with by his approach.

Some fixed Point Results for cone metric space

Journal of Information Engineering and Applications, 2014

In the Present paper we prove some fixed point theorems in cone metric space our result generalizes the previous result of mathematicians.

A unified theory of cone metric spaces and its applications to the fixed point theory

2013

In this paper, we develop a unified theory for cone metric spaces over a solid vector space. As an application of the new theory, we present full statements of the iterated contraction principle and the Banach contraction principle in cone metric spaces over a solid vector space. We propose a new approach to such cone metric spaces. We introduce a new notion of strict vector ordering, which is quite natural and it is easy to use in the cone metric theory and its applications to the fixed point theory. This notion plays the main role in the new theory. Among the other results in this paper, the following is perhaps of most interest. Every ordered vector space with convergence can be equipped with a strict vector ordering if and only if it is a solid vector space. Moreover, if the positive cone of an ordered vector space with convergence is solid, then there exists only one strict vector ordering on this space. Also, in this paper we present some useful properties of cone metric spaces, which allow us to establish convergence results for Picard iteration with a priori and a posteriori error estimates. MSC: 54H25; 47H10; 46A19; 65J15; 06F30

Non-normal cone metric and cone b-metric spaces and fixed point results

Scientific Publications of the State University of Novi Pazar Series A: Applied Mathematics, Informatics and mechanics, 2016

We show that most fixed point results obtained so far in cone metric spaces over solid non-normal cones can be easily reduced to the case of solid normal cones and, hence, their proofs can be made much simpler. Also, cone tvs-valued spaces over solid cones are not an essential generalization of cone metric spaces. These results are consequences of the simple fact that each solid cone in a topological vector space is in fact normal under a suitably defined norm. The proof follows by using the technique of Minkowski functional. As an application of these results, we prove an extension of the classical Nemytzki-Edelstein fixed point result to (tvs)-(b)-cone metric spaces over solid cones.

Multivalued fixed point results in cone metric spaces

Topology and its Applications, 2015

In this paper we extend main fixed point results of Kikkawa and Suzuki (2008) [19] and Mot and Petruşel (2009) [21] for the case of cone metric spaces without assumption of normality on cone. We also support our results by a nontrivial example and establish a homotopy theorem as an application.