A NOTE ON VARIOUS TYPES OF CONES AND FIXED POINT RESULTS IN CONE METRIC SPACES (original) (raw)

Abstract

Various types of cones in topological vector spaces are discussed. In particular, the usage of (non)-solid and (non)-normal cones in fixed point results is presented. A recent result about normable cones is shown to be wrong. Finally, a Geraghty-type fixed point result in spaces with cones which are either solid or normal is obtained.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (29)

  1. C. D. Aliprantis, R. Tourky, Cones and Duality, Graduate Studies in Mathematics, Vol. 84, American Mathematical Society, Providence, Rhode Island, 2007.
  2. A. Amini-Harandi, M. Fakhar, Fixed point theory in cone metric spaces obtained via scalar- ization method, Comput. Math. Appl. 59 (2010), 3529-3534.
  3. M. Asadi, B.E. Rhoades, H. Soleimani, Some notes on the paper "The equivalence of cone metric spaces and metric spaces", Fixed Point Theory Appl. 2012:87 (2012), doi:10.1186/1687-1812-2012-87.
  4. M. Asadi, S.M. Vaezpour, B.E. Rhoades, H. Soleimani, Metrizability of cone metric spaces via renorming the Banach spaces, ISPACS Nonlinear Anal. Appl. 2012, Article ID jnaa-00160, 5 pages, doi:10.5899/2012/jnaa-00160 (2012).
  5. I. Beg, A. Azam, M. Arshad, Common fixed points for maps on topological vector space valued cone metric spaces, Inter. J. Math. Math. Sciences (2009), 8 pages, doi:10.1155/2009/560264.
  6. H. C ¸akallı, A. Sönmez, C ¸. Genç, On an equivalence of topological vector space valued cone metric spaces and metric spaces, Appl. Math. Lett. 25 (2012), 429-433.
  7. K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, 1985.
  8. Wei-Shih Du, A note on cone metric fixed point theory and its equivalence, Nonlinear Anal. 72 (2010), 2259-2261.
  9. M. - Dor - dević, D. - Dorić, Z. Kadelburg, S. Radenović, D. Spasić, Fixed point results un- der c-distance in tvs-cone metric spaces, Fixed Point Theory Appl. 2011:29 (2011), doi:10.1186/1687-1812-2011-29.
  10. Y. Feng, W. Mao, The equivalence of cone metric spaces and metric spaces, Fixed Point Theory 11, 2 (2010), 259-264.
  11. M. Geraghty, On contractive mappings, Proc. Amer. Math. Soc. 40 (1973), 604-608.
  12. L.G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332 (2) (2007), 1468-1476.
  13. S. Janković, Z. Kadelburg, S. Radenović, On cone metric spaces: a survey, Nonlinear Anal. 74 (2011), 2591-2601.
  14. Z. Kadelburg, S. Radenović, V. Rakočević, Topological vector space valued cone metric spaces and fixed point theorems, Fixed Point Theory Appl. (2010), Article ID 170253, 18 pages, doi:10.1155/2010/170253.
  15. Z. Kadelburg, S. Radenović, V. Rakočević, A note on the equivalence of some metric and cone metric fixed point results, Appl. Math. Lett. 24 (2011), 370-374.
  16. M.A. Khamsi, P.J. Wojciechowski, On the additivity of the Minkowski functionals, Nonlinear Funct. Anal. Optim. 34(6) (2013), 635-647.
  17. M. Khani, M. Pourmahdian, On the metrizability of cone metric spaces, Topology Appl. 158, 2 (2011), 190-193.
  18. M. Krein, Propriétés fondamentales des ensembles coniques normaux dans l'espace de Ba- nach, C.R. (Doklady) Acad. Sci. URSS (N.S.) 28 (1940), 13-17.
  19. M.G. Kreȋn, M.A. Rutman, Linear operators leaving invariant a cone in a Banach spaces, Uspekhi Math. Nauk (N.S.), 3, 1 (1948), 3-95.
  20. - D.R. Kurepa, Tableaux ramifiés d'ensembles, C.R. Acad. Sci. Paris 198 (1934), 1563-1565.
  21. H. Kunze, D. La Torre, F. Mendivil, E.R. Vrcsay, Generalized fractal transforms and self- similar objects in cone metric spaces, Comput. Math. Appl. 64 (2012), 1761-1769.
  22. P.D. Proinov, A unified theory of cone metric spaces and its applications to the fixed point theory, Fixed Point Theory Appl. 2013:103 (2013), doi:10.1186/1687-1812-2013-103.
  23. S. Radenović, Z. Kadelburg, D. Jandrlić and A. Jandrlić, Some results on weak contraction maps, Bull. Iranian Math. Soc. 38(3) (2012), 625-645.
  24. Sh. Rezapour, R. Hamlbarani, Some notes on the paper "Cone metric spaces and fixed point theorems of contractive mappings", J. Math. Anal. Appl. 345 (2008), 719-724.
  25. H.H. Schaefer, Topological Vector Spaces, 3rd ed., Berlin-Heidelberg-New York: Springer- Verlag, 1971.
  26. J.S. Vandergraft, Newton's method for convex operators in partially ordered spaces, SIAM J. Numer. Anal. 4 (1967), 406-432.
  27. Yau-Chuen Wong, Kung-Fu Ng, Partially Ordered Topological Vector Spaces, Clarendon Press, Oxford, 1973.
  28. P.P. Zabrejko, K-metric and K-normed linear spaces: survey, Collect. Math. 48 (1997), 825-859.
  29. University of Belgrade, Faculty of Mathematics, Studentski trg 16, 11000 Beograd, Serbia University of Belgrade, Faculty of Mechanical Engineering, Kraljice Marije 16, 11120 Beograd, Serbia