Precipitation polymerization: a versatile tool for preparing molecularly imprinted polymer beads for chromatography applications (original) (raw)
Related papers
Molecularly imprinted polymers for bioanalytical sample preparation
Journal of Chromatography B, 2017
Molecularly imprinted polymers (MIP) are stable polymers with molecular recognition abilities, provided by the presence of a template during their synthesis, and are excellent materials with high selectivity for sample preparation in bioanalytical methods. This short review discusses aspects of MIP preparation and its applications as a sorbent material in pharmaceutical and biomedical analysis. MIP in different extraction configurations, including classical solid-phase extraction, solid-phase microextraction, magnetic molecularly imprinted solid-phase extraction, microextraction by packed sorbent and solid-phase extraction in pipette tips, are used to illustrate the good performance of this type of sorbent for sample preparation procedures of complex matrices, especially prior to bioanalytical approaches.
Selective sample treatment using molecularly imprinted polymers
Journal of Chromatography A, 2007
The molecularly imprinted polymers (MIPs) are synthetic polymers possessing specific cavities designed for a target molecule. By a mechanism of molecular recognition, the MIPs are used as selective sorbents for the solid-phase extraction of target analytes from complex matrices. MIPs are often called synthetic antibodies in comparison with immuno-based sorbents; they offer some advantages including easy, cheap and rapid preparation and high thermal and chemical stability. This review describes the use of MIPs in solid-phase extraction with emphasis on their synthesis, the various parameters affecting the selectivity of the extraction, their potential to selectively extract analytes from complex aqueous samples or organic extracts, their on-line coupling with LC and their potential in miniaturized devices.
Molecular imprinted polymers for separation science: A review of reviews
Journal of Separation Science, 2013
Molecular imprinted polymer is an artificial receptor made by imprinting molecules of a template in a polymer matrix followed by removing the template molecules via thorough washing to give the permanent template grooves. They show favored affinity to the template molecule compared to other molecules, and this property is the basic driving force for such diverse application of this techniques. Such techniques have been increasingly employed in a wide scope of applications such as chromatography, sample pretreatment, purification, catalysts, sensors, and drug delivery, etc., mostly in bioanalytical areas. A major part of them is related to development of new stationary phases and their application in chromatography and sample pretreatment. Embodiments of molecular imprinted polymer materials have been carried out in a variety of forms such as irregularly ground particles, regular spherical particles, nanoparticles, monoliths in a stainless steel or capillary column, open tubular layers in capillaries, surface attached thin layers, membranes, and composites, etc. There have been numerous review articles on molecular imprinted polymer issues. In this special review, the reviews in recent ca. 10 years will be categorized into several subgroups according to specified topics in separation science, and each review in each subgroup will be introduced in the order of date with brief summaries and comments on new developments and different scopes of prospects. Brief summaries of each categories and conclusive future perspectives are also given.
TrAC Trends in Analytical Chemistry, 2019
Molecularly imprinted polymers (MIPs), as artificially fabricated selective absorbents, have exhibited great potential for selective separation and enrichment of trace targets in complicated matrix. However, preparing MIPs for specific recognition in aqueous matrix often face enormous challenges, which greatly limit the wide application of MIPs for selectively analyzing targets in water-containing samples. Herein, we summarize various smart preparation strategies of MIPs for specific recognition in aqueous matrix (call as aqueous-recognition MIPs for short) in recent years, including free radical polymerization (regulating the preparation environment, introducing non-hydrogen bonding interactions, utilizing hydrophilic monomer or hydrophilic crosslinker, surface modification, etc.) and non-free radical polymerization (sol-gel route, chemical/natural polymer assembly, hydrophilic molecularly imprinted resin, etc.). Meanwhile, we focus on the application of
Recent molecularly imprinted polymers applications in bioanalysis
Chemical Papers
Molecular imprinted polymers (MIPs) as extraordinary compounds with unique features have presented a wide range of applications and benefits to researchers. In particular when used as a sorbent in sample preparation methods for the analysis of biological samples and complex matrices. Its application in the extraction of medicinal species has attracted much attention and a growing interest. This review focus on articles and research that deals with the application of MIPs in the analysis of components such as biomarkers, drugs, hormones, blockers and inhibitors, especially in biological matrices. The studies based on MIP applications in bioanalysis and the deployment of MIPs in high-throughput settings and optimization of extraction methods are presented. A review of more than 200 articles and research works clearly shows that the superiority of MIP techniques lies in high accuracy, reproducibility, sensitivity, speed and cost effectiveness which make them suitable for clinical usage. Furthermore, this review present MIP-based extraction techniques and MIP-biosensors which are categorized on their classes based on common properties of target components. Extraction methods, studied sample matrices, target analytes, analytical techniques and their results for each study are described. Investigations indicate satisfactory results using MIP-based bioanalysis. According to the increasing number of studies on method development over the last decade, the use of MIPs in bioanalysis is growing and will further expand the scope of MIP applications for less studied samples and analytes.
Molecularly imprinted polymers as affinity-based separation media for sample preparation
Journal of Separation Science, 2009
This review article deals with molecularly imprinted polymers (MIPs) as affinitybased separation media for sample preparation. An over view of two types of MIPs (molecularly imprinted particle and monolith) used for the sample preparation and modes of molecularly imprinted SPE (online mode, offline mode, on-column extraction, SPME, and microextraction in packed syringe) is given, focusing on the advantages and disadvantages of these types and modes. Next, problems (template leakage and incompatibility with aqueous conditions) associated with molecularly imprinted SPE and how to overcome those problems are described. Finally, pharmaceutical, food, bioanalytical, and environmental application of molecularly imprinted SPE will be discussed.