The Cyclin-Dependent Kinase Inhibitor Flavopiridol Potentiates the Effects of Topoisomerase I Poisons by Suppressing Rad51 Expression in a p53-Dependent Manner (original) (raw)
Related papers
Molecular Cancer …, 2002
The results of a phase I clinical trial of the topoisomerase I (Topo I) poison CPT-11 followed by the cyclin-dependent kinase inhibitor flavopiridol in patients with advanced solid tumors indicate that patients whose tumors were wild-type, but not mutant, for p53 obtained the most clinical benefit from this combination therapy. We elected to elucidate the mechanistic basis for this effect in isogenic-paired HCT116 colon cancer cells that were either wild-type (+/+) or null (À/À) for p53. With the combination therapy of SN-38 (the active metabolite of CPT-11) followed by flavopiridol, the induction of apoptosis was 5-fold greater in the p53+/+ cells compared with the p53À/À cells. This sequential treatment induced phosphorylation of p53 at Ser 15 , which interacted with Rad51, a DNA repair protein involved in homologous recombination. Rad51 bound to p53-Ser 15 within the first 5 hours of combination therapy, and then was transcriptionally suppressed at 24 hours by flavopiridol only in p53+/+ cells. Microarray analysis also revealed suppression of Rad51 in a p53-dependent manner. Depletion of Rad51 by small interfering RNA (siRNA) sensitized both p53+/+ and p53À/À cells to SN-38-induced apoptosis with increase of ;H2AX, a marker of DNA damage. Conversely, overexpression of Rad51 rescued p53+/+ cells from SN!F-induced apoptosis. Because flavopiridol inhibits Cdk9, we found that inhibition of Cdk9 by DRB or by siRNA could recapitulate the flavopiridol effects, with suppression of Rad51 and induction of apoptosis only in p53+/+ cells. In conclusion, after DNA damage by Topo I poisons, flavopiridol targets homologous recombination through a p53-dependent down-regulation of Rad51, resulting in enhancement of apoptosis.
Anti-Cancer Drugs, 2000
Embryonic stem cells (ESCs) need to maintain their genomic integrity in response to DNA damage to safeguard the integrity of the organism. DNA double strand breaks (DSBs) are one of the most lethal forms of DNA damage and, if not repaired correctly, they can lead to cell death, genomic instability and cancer. How human ESCs (hESCs) maintain genomic integrity in response to agents that cause DSBs is relatively unclear. In the present study we aim to determine the hESC response to the DSB inducing agent camptothecin (CPT). We find that hESCs are hypersensitive to CPT, as evidenced by high levels of apoptosis. CPT treatment leads to DNA-damage sensor kinase (ATM and DNA-PKcs) phosphorylation on serine 1981 and serine 2056, respectively. Activation of ATM and DNA-PKcs was followed by histone H2AX phosphorylation on Ser 139, a sensitive reporter of DNA damage. Nuclear accumulation and ATM-dependent phosphorylation of p53 on serine 15 were also observed. Remarkably, hESC viability was further decreased when ATM or DNA-PKcs kinase activity was impaired by the use of specific inhibitors. The hypersensitivity to CPT treatment was markedly reduced by blocking p53 translocation to mitochondria with pifithrin-μ. Importantly, programmed cell death was achieved in the absence of the cyclin dependent kinase inhibitor, p21 Waf1 , a bona fide p53 target gene. Conversely, differentiated hESCs were no longer highly sensitive to CPT. This attenuated apoptotic response was accompanied by changes in cell cycle profile and by the presence of p21 Waf1. The results presented here suggest that p53 has a key involvement in preventing the propagation of damaged hESCs when genome is threatened. As a whole, our findings support the concept that the phenomenon of apoptosis is a prominent player in normal embryonic development.
Clinical Cancer Research
Flavopiridol, a synthetic flavone that inhibits tumor growth in vitro and in vivo, is a potent cyclin-dependent kinase (cdk) inhibitor presently in clinical trials. In the present study, the effect of 100-500 nM flavopiridol on a panel of non-small cell lung cancer cell lines was examined. All express a wild-type retinoblastoma susceptibility protein and lack p16INK4A, and only A549 cells are known to express wild-type p53. During 72 h of treatment, flavopiridol was shown to be cytotoxic to all seven cell lines, as measured by trypan blue exclusion, regardless of whether cells were actively cycling. In most cycling cells, cytotoxicity was preceded or accompanied by cell cycle arrest. Cell death resulted in the appearance of cells with a sub-G1 DNA content, suggestive of apoptosis, which was confirmed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay and by demonstration of cleavage of caspase targets including poly(ADP-ribose) polymerase, p21Waf1, and p2...
Blood, 1993
The effects of monocytic/macrophage and granulocytic differentiation induced by phorbol myristate acetate (TPA) and all-trans retinoic acid, respectively, were tested on the induction of apoptosis in human promyelocytic leukemia HL-60 cells treated with topoisomerase I and II inhibitors. Using a filter-binding assay, we observed a strong inhibition of DNA fragmentation induced by 3- and 24-hour continuous exposure to camptothecin, VP-16, VM-26, and m-AMSA in TPA-differentiated cells. The inhibition of the typical internucleosomal DNA fragmentation was confirmed by agarose gel electrophoresis. By contrast, drug-induced DNA fragmentation was not inhibited in retinoic acid-differentiated cells, and apoptosis occurred in these cells after 4 to 5 days in the absence of drug treatment. The TPA inhibitory effect was maximal after 24 hours of treatment and was correlated with differentiation, because phorbol dibutyrate ester was active, whereas 4-alpha-TPA, a nontumor promoter that does not...
Mini-Reviews in Medicinal Chemistry, 2007
DNA damage induces apoptosis of cells of hematological origin. Apoptosis is also widely believed to be the major antiproliferative mechanism of DNA damaging anticancer drugs in other cell types, and a large number of laboratories have studied drug-induced acute apoptosis (within 24 hours) of carcinoma cells. It is, however, often overlooked that induction of apoptosis of carcinoma cells generally requires drug concentrations that are at least one order of magnitude higher than those required for loss of clonogenicity. This is true for different DNA damaging drugs such as cisplatin, doxorubicin and camptothecin. We here discuss apoptosis induction by DNA damaging agents using cisplatin as an example. Recent studies have shown that cisplatin induces caspase activation in enucleated cells (cytoplasts lacking a cell nucleus). Cisplatin-induced apoptosis in both cells and cytoplasts is associated with rapid induction of cellular reactive oxygen species and increases in [Ca 2+ ] i. Cisplatin has also been reported to induce clustering of Fas/CD95 in the plasma membrane. Available data suggest that the primary responses to cisplatin-induced DNA damage are induction of longterm growth arrest ("premature cell senescence") and mitotic catastrophe, whereas acute apoptosis may be due to "offtarget effects" not necessarily involving DNA damage.
Glycoconjugate Journal, 2000
Breast cancer is the most common type of cancer, predominantly among women over 20, whereas colo-rectal cancer occurs in both men and women over the age of 50. Chemotherapy of both cancers affect rapidly growing normal as well as cancer cells. Cancer cells are non-apoptotic. Seven anti-cancer agents (cis-platin, Tamoxifen, Melphalan, Betulinic acid, D-PDMP, L-PPMP, and GD3) have been tested with human breast (SKBR3) and colon (Colo-205) carcinoma cells for their apoptotic effect and found to be positive by several assay systems. Colo-205 cells were obtained from ATCC, and the SKBR3 cells were a gift from the Cleveland Clinic. All of these six agents killed those two cell lines in a dose-dependent manner. In the early apoptotic stage (6 h), these cells showed only a flopping of phosphatidylserine on the outer lamella of the plasma membranes as evidenced by the binding of a novel fluorescent dye PSS-380. After 24 h of the treatment, those apoptotic cells showed damage of the plasma as well as the nuclear membrane as evidenced by binding of propidium iodide to the nuclear DNA. DNA laddering assay viewed further breakdown of DNA by 1% agarose gel electrophoresis analysis. It is concluded that during apoptosis the signaling by Mitochondrial Signaling Pathway (MSP) is stimulated by some of these agents. Caspase 3 was activated with the concomitant appearance of its p17 polypeptide as viewed by Westernblot analyses. Incorporation of radioactivity from [U-14 C]-L-serine in total sphingolipid mixture was observed between 2 and 4 micromolar concentrations of most of the agents except cis-platin. However, apoptosis in carcinoma cells in the presence of cis-platin is induced by a caspase 3 activation pathway without any increase in synthesis of ceramide.
Carcinogenesis, 2001
We have demonstrated previously that the toxicity of 5-hydroxymethyl-2Ј-deoxyuridine (hmdUrd) to Chinese hamster fibroblasts (V79 cells) results from enzymatic removal of large numbers of hydroxymethyluracil residues from the DNA backbone [Boorstein,R. et al. (1992) Mol. Cell. Biol., 12, 5536-5540]. Here we report that a significant portion of the hmdUrd-induced cell death that is dependent on DNA base excision repair in V79 cells is apoptosis. Incubation of V79 cells with pharmacologically relevant concentrations of hmdUrd resulted in the characteristic changes of apoptosis as measured by gel electrophoresis, flow cytometry and phase contrast microscopy. However, hmdUrd did not induce apoptosis in V79mut1 cells, which are deficient in DNA base excision repair of 5-hydroxymethyluracil (hmUra). Apoptosis was not prevented by addition of 3-aminobenzamide, which inhibits synthesis of poly(ADP-ribose) from NAD, indicating that apoptosis was not the direct consequence of NAD depletion. Pulsed field gel electrophoresis indicated that hmdUrd treatment resulted in high molecular weight (2.2-4.5 Mb) DNA double-strand breaks prior to formation of internucleosomal ladders in V79 cells. Simultaneous measurement of DNA strand breaks with bromodeoxyuridine/terminal deoxynucleotidyl transferase-fluorescein isothiocyanate labeling and of cell cycle distribution indicated that cells with DNA strand breaks accumulated in late S/G 2 and that hmdUrd-treated cells underwent apotosis after arrest in late S/G 2 phase. Our results indicate that excessive DNA base excision repair results in the generation of high molecular weight DNA double-strand breaks and eventually leads to apoptosis in V79 cells. Thus, delayed apoptosis following DNA damage can be a consequence of excessive DNA repair activity. Immunochemical analysis showed that both V79 and V79mut1 cells contained mutant p53, indicating that apoptosis induced by DNA base excision repair can be independent of p53.
Molecular Cancer Therapeutics, 2002
Interactions between the cyclin-dependent kinase inhibitor flavopiridol (FP) and the histone deacetylase inhibitor sodium butyrate (SB) have been examined in human leukemia cells (U937) in relation to differentiation and apoptosis. Whereas 1 mM of SB or 100 nM of FP minimally induced apoptosis (4% and 10%, respectively) at 24 h, simultaneous exposure of U937 cells to these agents dramatically increased cell death (e.g., ϳ60%), reflected by both morphological and Annexin/propidium iodide-staining features, procaspase 3 activation, and poly(ADP-ribose) polymerase cleavage. Similar interactions were observed in human promyelocytic (HL-60), Blymphoblastic (Raji), and T-lymphoblastic (Jurkat) leukemia cells. Coadministration of FP opposed SB-mediated accumulation of cells in G 0 G 1 and differentiation, reflected by reduced CD11b expression, but instead dramatically increased procaspase-3, procaspase-8, Bid, and poly(ADP-ribose) polymerase cleavage, as well as mitochondrial damage (e.g., loss of mitochondrial membrane potential and cytochrome c release). FP also blocked SB-related p21 WAF1-CIP1 induction through a caspase-independent mechanism and triggered the caspase-mediated cleavage of p27 KIP1 and retinoblastoma protein. The latter event was accompanied by a marked reduction in retinoblastoma protein/E2F1 complex formation. However, FP did not modify the extent of SBassociated acetylation of histones H3 and H4. Treatment of cells with FP/SB also resulted in the caspase-mediated cleavage of Bcl-2 and caspaseindependent down-regulation of Mcl-1. Levels of cyclins A, D 1 , and E, and X-linked inhibitor of apoptosis also declined in SB/FP-treated cells. Finally, FP/SB coexposure potently induced apoptosis in two primary acute myelogenous leukemia samples. Together, these findings demonstrate that FP, when combined with SB, induces multiple perturbations in cell cycle and apoptosis regulatory proteins, which oppose leukemic cell differentiation but instead promote mitochondrial damage and apoptosis.
Blood Cells, Molecules, and Diseases, 2001
Burkitt's lymphoma cell lines have been important in vitro models for studying the pathogenesis of Burkitt's lymphoma (BL) and for exploring new treatment strategies. A new EBV(Ϫ) Burkitt's lymphoma cell line (GA-10) was established from a patient with a clinically aggressive, chemorefractory BL and characterized. Although functional p-glycoprotein could not be demonstrated by dye-efflux assays, both p53 genes were mutated in the GA-10 cells, perhaps contributing to the resistant phenotype of the original neoplasm. Two properties of BL cells which may be useful targets for novel cytotoxic therapeutics are their surface expression of CD77, the receptor for Shiga toxin (Stx), and their high rate of proliferation. Expression of CD77 on the GA-10 cells was heterogeneous in that certain subclones expressed high levels of CD77 and correspondingly exhibited strong growth inhibition by Stx while others showed low levels of CD77 expression and weak Stx-induced growth inhibition. Flavopiridol, a potent inhibitor of cell cycle progression through G1 and G2, induced cytotoxicity of the GA-10 cells with an LC 50 of approximately 40 nM vs 70 nM for HL-60 cells (P Ͻ 0.05). The concentrations of flavopiridol at which only 10% of the cells were viable (LC 10 ) were approximately 280 nM for the GA-10 cells and 520 nM for the HL-60 cells (P Ͻ 0.05). Dose-related induction of apoptosis in response to flavopiridol was demonstrated in the GA-10 cells by morphology, TUNEL assay, and activation of caspase-3. Flavopiridol was also cytotoxic to seven other BL cell lines tested. These data suggest that flavopiridol may have therapeutic value in the treatment of Burkitt's lymphoma.