Scattering of elastic waves by a 2-D crack using the Indirect Boundary Element Method (IBEM) (original) (raw)

Abstract

The scattering of elastic waves by cracks is an old problem and various ways to solve it have been proposed in the last decades. One approach is using dual integral equations, another useful and common formulation is the Boundary Element Method (BEM). With the last one, the boundary conditions of the crack lead to hyper-singularities and particular care should be taken to regularize and solve the resulting integral equations.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (19)

  1. Achenbach, J.D., 1973. Wave propagation in Elastic Solids, North-Holland, Amsterdam.
  2. Achenbach, J.D., Gautesen, A.K. & McMaken, H., 1982. Ray methods for waves in elastic solids with applications to scattering by cracks, Pitman, London.
  3. Aki, K. & Richards, P.G., 1980. Quantitative Seismology, W.H. Freeman, San Francisco.
  4. Aliabadi, M.H., 1997. Boundary elemeny formulations in fracture mechan- ics. Appl. Mech. Rev., 50, 83-96.
  5. Ang, D.D. & Knopoff, L., 1964a. Diffraction of vector elastic waves by a finite crack, Proc. Nat. Acad. Sci. USA, 52, 1075-1081.
  6. Ang, D.D. & Knopoff, L., 1964b. Diffraction of vector elastic waves by a clamped finite strip, Proc. Nat. Acad. Sci. USA, 52, 201-207.
  7. Banerjee, P.K. & Butterfield, R., 1981. Boundary Element Methods in Engi- neering Science, McGraw Hill, London.
  8. Bonnet, M., 1995. Boundary integral equation methods for solids and fluids, John Wiley & Sons, New York.
  9. Coutant, O., 1989. Numerical study of the diffraction of elastic waves by fluid-filled cracks. J. geophys. Res., 94, 17 805-17 817.
  10. Cruse, T.A., 1988. Boundary element analysis in computational fracture mechanics, Kluwer Academic Publishers, Boston USA.
  11. Hevin, G., Abraham, O., Pedersen, H. & Campillo, M., 1998. Characteri- zation of surface cracks with Rayleigh waves: a numerical model. NDT International, 31, 289-297.
  12. Hudson J.A., 1986. A higher order approximation to the wave propagation constants for cracked solid, Geophys. J. R. astr. Soc, 87, 265-274.
  13. Mal, A.K., 1970. Interaction of elastic waves with a Griffith crack. Int. J. Engng. Sci., 8, 763-776.
  14. Ortiz-Alemán, C., Sánchez-Sesma, F.J., Rodríguez, J.L. & Luzón, F., 1998. Computing topographical 3-D site effects using a fast IBEM/Conjugate Gradient approach. Bull. seis. Soc. Am., 88, 393-399.
  15. Pointer, T., Liu, E. & Hudson, J., 1998. Numerical modelling of seismic waves scattered by hydrofractures: application of the indirect boundary element method. Geophys. J. Int., 135, 289-303.
  16. Prosper, D., 1998. Modeling and detection of delamination in laminated plates. PhD thesis, Massachusetts Institute of Technology.
  17. Sánchez-Sesma, F.J. & Campillo, M., 1991. Diffraction of P, SV and Rayleigh waves by topographic features: a bounday integral formulation. Bull. seis. Soc. Am., 81, 2234-2253.
  18. Sánchez-Sesma, F.J. & Iturrarán-Viveros, U., 2001. Scattering and diffraction of SH waves by a finite crack: an analytical solution. Geophys. J. Int., 145, 749-758.
  19. van der Hijden, J.H.M.T. & Neerhof, F.L., 1984. Scattering of elastic waves by a plane crack of finite width. Transactions of the ASME, 51, 646-651.