On the genus of nil-graph of ideals of commutative rings (original) (raw)
Abstract
Let R be a commutative ring with identity and let Nil(R) be the ideal of all 2 nilpotent elements of R. Let I(R) = {I : I is a non-trivial ideal of R and there exists a 3 non-trivial ideal J such that IJ ⊆ Nil(R)}. The nil-graph of ideals of R is defined as the 4 simple undirected graph AG N (R) whose vertex set is I(R) and two distinct vertices I and 5 J are adjacent if and only if IJ ⊆ Nil(R). In this paper, we study the planarity and genus of 6 AG N (R). In particular, we have characterized all commutative Artin rings R for which the 7 genus of AG N (R) is either zero or one.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (24)
- D.F. Anderson, A. Badawi, The total graph of a commutative ring, J. Algebra 320 (2008) 2706-2719.
- D.F. Anderson, P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999) 434-447.
- D.D. Anderson, M. Naseer, Becks coloring of a commutative ring, J. Algebra 159 (1993) 500-514.
- T. Asir, T. Tamizh Chelvam, On the genus two characterizations of unit, unitary cayley and co-maximal graphs, ARS Combin. (2016) in press.
- T. Asir, T. Tamizh Chelvam, On the genus of generalized unit and unitary cayley graphs of a commutative ring, Acta Math. Hungar. 142 (2) (2014) 444-458. http://dx.doi.org/10.1007/s10474-013-0365-1.
- T. Asir, T. Tamizh Chelvam, On the intersection graph of gamma sets in the total graph I, J. Algebra Appl. 12 (4) (2013) #1250198. http://dx.doi.org/10.1142/S0219498812501988.
- A. Badawi, On the annihilator graph of a commutative ring, Comm. Algebra 42 (2014) 108-121. http://dx.doi.org/10.1080/00927872.2012.707262.
- A. Badawi, On the dot product graph of a commutative ring, Comm. Algebra 43 (2015) 43-50.
- I. Beck, Coloring of a commutative ring, J. Algebra 116 (1988) 208-226.
- M. Behboodi, Z. Rakeei, The annihilating-ideal graph of commutative rings I, J. Algebra Appl. 10 (4) (2011) 727-739.
- M. Behboodi, Z. Rakeei, The annihilating-ideal graph of commutative rings II, J. Algebra Appl. 10 (4) (2011) 741-753.
- H.R. Maimani, M. Salimi, A. Sattari, S. Yassemi, Comaximal graph of commutative rings, J. Algebra 319 (2008) 1801-1808.
- H.R. Maimani, C. Wickham, S. Yassemi, Rings whose total graphs have genus at most one, Rocky Mountain J. Math. 42 (2012) 1551-1560.
- W. Massey, Algebraic Topology: An Introduction, Harcourt, Brace & World, Inc., New York, 1967.
- Bojan Mohar, Carsten Thomassen, Graphs on Surfaces, The Johns Hopkins University Press, Baltimore and London, 1956.
- F. Shaveisi, R. Nikandish, The nil-graph of ideals of a commutative ring, Bull. Malays. Math. Sci. Soc. 39 (2016) 3-11.
- T. Tamizh Chelvam, T. Asir, On the genus of the total graph of a commutative ring, Comm. Algebra 41 (2013) 142-153. http://dx.doi.org/10.1080/00927872.2011.624147.
- T. Tamizh Chelvam, S. Nithya, Crosscap of the ideal based zero-divisor graph, Arab J. Math. Sci. 22 (1) (2016) 29-37. http://dx.doi.org/10.1016/j.ajmsc.2015.01.003.
- T. Tamizh Chelvam, K. Selvakumar, Central sets in annihilating-ideal graph of a commutative ring, J. Combin. Math. Combin. Comput. 88 (2014) 277-288.
- T. Tamizh Chelvam, K. Selvakumar, Domination in the directed zero-divisor graph of ring of matrices, J. Combin. Math. Combin. Comput. 91 (2014) 155-163.
- T. Tamizh Chelvam, K. Selvakumar, On the intersection graph of gamma sets in the zero-divisor, Discrete Math. Algebra Appl. 7 (1) (2015) # 1450067. http://dx.doi.org/10.1142/S1793830914500670.
- T. Tamizh Chelvam, K. Selvakumar, On the connectivity of the annihilating-ideal graphs, Discuss. Math. Gen. Algebra Appl. 35 (2015) 195-204. http://dx.doi.org/10.7151/dmgaa.1241.
- T. Tamizh Chelvam, K. Selvakumar, V. Ramanathan, On the planarity of the k-zero-divisor hypergraphs, AKCE Int. J. Graphs Comb. 12 (2015) 169-176. http://dx.doi.org/10.1016/j/akcej201511.011.
- A.T. White, Graphs, Groups and Surfaces, North-Holland, Amsterdam, 1973.