A Genetic Algorithm for Solving Single Level Lot–Sizing Problems (original) (raw)
The single level lot-sizing problem arises whenever a manufacturing company wishes to translate an aggregate plan for production of an end item into a detailed planning of its production. Although the cost driven problem is widely studied in the literature, only laborious dynamic programming approaches are known to guarantee global minimum. Thus, stochastically-based heuristics that have the mechanism to escape from local minimum are needed. In this paper a genetic algorithm for solving single level lot-sizing problems is proposed and the results of applying the algorithm to example problems are discussed. In our implementation, a lot-sizing population-generating heuristic is used to feed chromosomes to a genetic algorithm with operators specially designed for lot-sizing problems. The combination of the population-generating heuristic with genetic algorithm results in a faster convergence in finding the optimal lot-sizing scheme due to the guaranteed feasibility of the initial population.
Sign up for access to the world's latest research.
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.