In vitro and in vivo activity of a new unsymmetrical dinuclear copper complex containing a derivative ligand of 1,4,7-triazacyclononane: catalytic promiscuity of [Cu2(L)Cl3] (original) (raw)

Abstract

Here we present the synthesis of the dinuclear complex [Cu II 2 (L)Cl 3 ] (1), where L is the deprotonated form of the 3-[(4,7-diisopropyl-1,4,7-triazacyclononan-1-yl)methyl]-2-hydroxy-5-methylbenzaldehyde ligand. The complex was characterized by single crystal X-ray diffraction, potentiometric titration, mass spectrometry, electrochemical and magnetic measurements, EPR, UV-Vis and IR. Complex 1 is able to increase the hydrolysis rate of the diester bis-(2,4-dinitrophenyl)phosphate (2,4-BDNPP) by a factor of 2700, and also to promote the plasmidial DNA cleavage at pH 6 and to inhibit the formazan chromophore formation in redox processes at pH 7. Using Saccharomyces cerevisiae (BY4741) as a eukaryotic cellular model, we observed that 1 presents reduced cytotoxicity. In addition, treatment of wild-type and mutant cells lacking Cu/Zn-superoxide dismutase (Sod1) and cytoplasmic catalase (Ctt1) with 1 promotes increased survival after H 2 O 2 or menadione (O 2˙− generator) stress, indicating that 1 might act as a Sod1 and Ctt1 mimetic. Considered together, these results support considerations regarding the dynamic behaviour of an unsymmetrical dinuclear copper(II) complex in solid state and in aqueous pH-dependent solution.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (76)

  1. H. Beinert, J. Biol. Chem., 2002, 277, 37967-37972.
  2. W. Kaim and B. Schwederski, Bioiorganic Chemistry: In- organic Elements in the Chemistry of Life, Wiley, 1994.
  3. J. S. Lippard and J. M. Berg, Principles of Bioinorganic Chem- istry, University Science Books, Mill Valley, 1994.
  4. M. Valko, H. Morris and M. T. D. Cronin, Curr. Med. Chem., 2005, 12, 1161-1208.
  5. E. I. Solomon, Pure Appl. Chem., 1983, 55, 1059-1068.
  6. J. J. Danford, P. Dobrowolski and L. M. Berreau, Inorg. Chem., 2009, 48, 11352-11361.
  7. L. R. Gahan, S. J. Smith, A. Neves and G. Schenk, Eur. J. Inorg. Chem., 2009, 2745-2758.
  8. K. S. Hadler, N. a. Mitić, S. H.-C. Yip, L. R. Gahan, D. L. Ollis, G. Schenk and J. A. Larrabee, Inorg. Chem., 2010, 49, 2727-2734.
  9. T. Fujimori, S. Yamada, H. Yasui, H. Sakurai, Y. In and T. Ishida, J. Biol. Inorg. Chem., 2005, 10, 831-841.
  10. M. G.-A. lvarez, G. Alzuet, J. n. Borrás, L. d. C. Agudo, S. García-Granda and J. M. Montejo-Bernardo, Inorg. Chem., 2005, 44, 9424.
  11. M. Ciuffi, C. Cellai, S. Franchi-Micheli, L. Zilletti, M. Ginanneschi, M. Chelli, A. M. Papini and F. Paoletti, Pharmacol. Res., 1998, 38, 279-287.
  12. Z. Boulsourani, G. D. Geromichalos, K. Repana, E. Yiannaki, V. Psycharis, C. P. Raptopoulou, D. Hadjipavlou-Litina, E. Pontiki and C. Dendrinou- Samara, J. Inorg. Biochem., 2011, 105, 839-849.
  13. C. Fernandes, A. Horn Jr, O. Vieira-da-Motta, V. M. de Assis, M. R. Rocha, L. d. S. Mathias, É. S. Bull, A. J. Bortoluzzi, E. V. Guimarães and J. C. A. Almeida, J. Inorg. Biochem., 2010, 104, 1214-1223.
  14. Y. Harinath, D. H. K. Reddy, B. N. Kumar, K. Lakshmi and K. Seshaiah, J. Chem. Pharm. Res., 2011, 3, 698.
  15. G. Psomas, A. Tarushi, E. K. Efthimiadou, Y. Sanakis, C. P. Raptopoulou and N. Katsaros, J. Inorg. Biochem., 2006, 100, 1764-1773.
  16. N. R. Perron, C. R. García, J. R. Pinzón, M. N. Chaur and J. L. Brumaghim, J. Inorg. Biochem., 2011, 105, 745-753.
  17. M. C. B. Oliveira, D. Mazera, M. Scarpellini, P. C. Severino, A. Neves and H. N. Terenzi, Inorg. Chem., 2009, 48, 2711-2713.
  18. E. T. Souza, L. C. Castro, F. A. V. Castro, L. do Canto Visen- tin, C. B. Pinheiro, M. D. Pereira, S. de Paula Machado and M. Scarpellini, J. Inorg. Biochem., 2009, 103, 1355-1365.
  19. A. Horn, G. L. Parrilha, K. V. Melo, C. Fernandes, M. Horner, L. d. C. Visentin, J. A. S. Santos, M. S. Santos, E. C. A. Eleutherio and M. D. Pereira, Inorg. Chem., 2010, 49, 1274-1276.
  20. J. A. Lessa, A. Horn, E. r. S. Bull, M. R. Rocha, M. Benassi, R. R. Catharino, M. N. Eberlin, A. Casellato, C. J. Noble, G. R. Hanson, G. Schenk, G. C. Silva, O. A. C. Antunes and C. Fernandes, Inorg. Chem., 2009, 48, 4569-4579.
  21. H. Biava, C. Palopoli, S. Shova, M. D. Gaudio, V. Daier, M. González-Sierra, J.-P. Tuchagues and S. Signorella, J. Inorg. Biochem., 2006, 100, 1660-1671.
  22. F. Yan, Y. Mu, G. Yan, J. Liu, J. Shen and G. Luo, Mini-Rev. Med. Chem., 2010, 10, 342.
  23. A. Klanicová, Z. Trávníček, J. Vančo, I. Popa and Z. Šindelář, Polyhedron, 2010, 29, 2582-2589.
  24. P. Gómez-Saiz, R. Gil-García, M. A. Maestro, J. L. Pizarro, M. I. Arriortua, L. Lezama, T. Rojo, M. González-Álvarez, J. Borrás and J. García-Tojal, J. Inorg. Biochem., 2008, 102, 1910-1920.
  25. M. Ruiz, R. Ortiz, L. Perelló, J. Latorre and J. Server-Carrió, J. Inorg. Biochem., 1997, 65, 87-96.
  26. M. N. Patel, D. S. Gandhi and P. A. Parmar, Inorg. Chem. Commun., 2011, 14, 128-132.
  27. P. Chaudhuri and K. Wieghardt, Prog. Inorg. Chem., 1987, 35, 329-436.
  28. G. R. Giesbrecht, C. Cui, A. Shafir, J. A. R. Schmidt and J. Arnold, Organometallics, 2002, 21, 3841.
  29. I. Bar-Nahum, A. K. Gupta, S. M. Huber, M. Z. Ertem, C. J. Cramer and W. B. Tolman, J. Am. Chem. Soc., 2009, 131, 2812-2814.
  30. D. Ellis, L. J. Farrugia and R. D. Peacock, Polyhedron, 1999, 18, 1229-1234.
  31. U. Kreher, M. T. W. Hearn, B. Moubaraki, K. S. Murray and L. Spiccia, Polyhedron, 2007, 26, 3205-3216.
  32. I. Castro-Rodriguez, K. Olsen, P. Gantzel and K. Meyer, J. Am. Chem. Soc., 2003, 125, 4565.
  33. R. A. Peralta, A. Neves, A. J. Bortoluzzi, A. dos Anjos, F. R. Xavier, B. Szpoganicz, H. Terenzi, M. C. B. de Oliveira, E. Castellano and G. R. Friedermann, J. Inorg. Biochem., 2006, 100, 992-1004.
  34. N. A. Rey, A. Neves, A. J. Bortoluzzi, C. T. Pich and H. Terenzi, Inorg. Chem., 2007, 46, 348.
  35. S. C. Fernandes, I. C. Vieira, R. A. Peralta and A. Neves, Electrochim. Acta, 2010, 55, 7152-7157.
  36. K. M. Deck, T. A. Tseng and J. N. Burstyn, Inorg. Chem., 2002, 41, 669-677.
  37. R. R. Gagne, C. A. Koval and G. C. Lisensky, Inorg. Chem., 1980, 19, 2854-2855.
  38. S. Stoll and A. Schweiger, J. Magn. Reson., 2006, 178, 42-55.
  39. MatLab, Version 7.10.0. Natick, The MathWorks Inc, Massa- chusetts, 2010.
  40. F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith and K. Struhl, Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Wiley, New York, 1999.
  41. C. J. O'Connor, Prog. Inorg. Chem., 1982, 29, 203-283.
  42. R. j. Motekaitis and A. E. Martell, Can. J. Chem., 1982, 60, 2403-2409.
  43. A. E. Martell and R. j. Motekaitis, Determinations of Stability Constants, VHC Publischers, Weinheim, Germany, 2nd edn, 1992.
  44. C. A. Bunton and S. J. Farber, J. Org. Chem., 1969, 34, 767-772.
  45. R. A. Peralta, A. J. Bortoluzzi, B. de Souza, R. Jovito, F. R. Xavier, R. A. A. Couto, A. Casellato, F. Nome, A. Dick, L. R. Gahan, G. Schenk, G. R. Hanson, F. v. C. S. de Paula, E. C. Pereira-Maia, S. de P. Machado, P. C. Severino, C. Pich, T. Bortolotto, H. n. Terenzi, E. E. Castellano, A. Neves and M. J. Riley, Inorg. Chem., 2010, 49, 11421-11438.
  46. F. R. Xavier, A. Neves, A. Casellato, R. A. Peralta, A. J. Bortoluzzi, B. Szpoganicz, P. C. Severino, H. n. Terenzi, Z. Tomkowicz, S. Ostrovsky, W. Haase, A. Ozarowski, J. Krzystek, J. Telser, G. Schenk and L. R. Gahan, Inorg. Chem., 2009, 48, 7905-7921.
  47. M. Scarpellini, A. Neves, R. Hörner, A. J. Bortoluzzi, B. Szpoganics, C. Zucco, R. A. Nome Silva, V. Drago, A. S. Mangrich, W. A. Ortiz, W. A. C. Passos, M. C. B. De Oliveira and H. Terenzi, Inorg. Chem., 2003, 42, 8353-8365.
  48. A. Neves, H. Terenzi, R. Horner, A. Horn, B. Szpoganicz and J. Sugai, Inorg. Chem. Commun., 2001, 4, 388-391.
  49. J. Bernadou, G. Pratviel, F. Bennis, M. Girardet and B. Meunier, Biochemistry, 1989, 28, 7268-7275.
  50. F. A. V. Castro, D. Mariani, A. D. Panek, E. C. A. Eleutherio and M. D. Pereira, PLoS One, 2008, 3, e3999.
  51. M. D. Pereira, E. C. Eleutherio and A. D. Panek, BMC Micro- biol., 2001, 1.
  52. F. R. Xavier, A. J. Bortoluzzi and A. Neves, Chem. Biodiver- sity, 2012, 9, 1794-1805.
  53. CAD4 EXPRESS version. 5.1/1.2, Enraf Nonius, Delft, The Netherlands, 1994.
  54. A. L. Spek, HELENA, CAD-4 Data Reduction Program, Univer- sity of Utrecht, The Netherlands, 1996. Paper Dalton Transactions
  55. A. C. T. North, D. C. Phillips and F. S. Mathews, Acta Crys- tallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Cryst., 1968, 24, 351-359.
  56. A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori and R. Spagna, J. Appl. Crystallogr., 1999, 32, 115-119.
  57. G. M. Sheldrick, Acta Crystallogr., Sect. A: Found Crystallogr., 2008, 64, 112-122.
  58. A. L. Spek, Acta Crystallogr., Sect. D: Biol. Crystallogr., 2009, 65, 148-155.
  59. A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn and G. C. Verschoor, J. Chem. Soc., Dalton Trans., 1984, 1349-1356.
  60. K. D. Karlin, A. Farooq, J. C. Hayes, B. I. Cohen, T. M. Rowe, E. Sinn and J. Zubieta, Inorg. Chem., 1987, 26, 1271-1280.
  61. F. H. Fry, B. Moubaraki, K. S. Murray, L. Spiccia, M. Warren, B. W. Skelton and A. H. White, Dalton Trans., 2003, 866-871.
  62. S. J. Brudenell, L. Spiccia, A. M. Bond, P. Comba and D. C. R. Hockless, Inorg. Chem., 1998, 37, 3705-3713.
  63. S. J. Brudenell, L. Spiccia and E. R. T. Tiekink, Inorg. Chem., 1996, 35, 1974-1979.
  64. I. Batinić-Haberle, J. S. Rebouc and I. Spasojević, Antioxid. Redox Signaling, 2010, 13, 877.
  65. F. H. Fry, L. Spiccia, P. Jensen, B. Moubaraki, K. S. Murray and E. R. T. Tiekink, Inorg. Chem., 2003, 42, 5594-5603.
  66. G. Schenk, R. Peralta, S. Batista, A. Bortoluzzi, B. Szpoganicz, A. Dick, P. Herrald, G. Hanson, R. Szilagyi, M. Riley, L. Gahan and A. Neves, J. Biol. Inorg. Chem., 2008, 13, 139-155.
  67. R. E. H. M. B. Osório, R. A. Peralta, A. J. Bortoluzzi, V. R. de Almeida, B. Szpoganicz, F. L. Fischer, H. Terenzi, A. S. Mangrich, K. M. Mantovani, D. E. C. Ferreira, W. R. Rocha, W. Haase, Z. Tomkowicz, A. dos Anjos and A. Neves, Inorg. Chem., 2012, 51, 1569-1589.
  68. M. W. Van Dyke, R. P. Hertzberg and P. B. Dervan, Proc. Natl. Acad. Sci. U. S. A., 1982, 79, 5470-5474.
  69. S. K. Kim and B. Norden, FEBS Lett., 1993, 315, 61-64.
  70. S. Ferrer, R. Ballesteros, A. Sambartolomé, M. González, G. Alzuet, J. Borrás and M. Liu, J. Inorg. Biochem., 2004, 98, 1436-1446.
  71. Q. Jiang, N. Xiao, P. Shi, Y. Zhu and Z. Guo, Coord. Chem. Rev., 2007, 251, 1951-1972.
  72. R. A. Peralta, A. J. Bortoluzzi, B. Szpoganicz, T. A. S. Brandão, E. E. Castellano, M. B. De Oliveira, P. C. Severino, H. Terenzi and A. Neves, J. Phys. Org. Chem., 2010, 23, 1000-1013.
  73. Y.-H. Zhou, H. Fu, W.-X. Zhao, W.-L. Chen, C.-Y. Su, H. Sun, L.-N. Ji and Z.-W. Mao, Inorg. Chem., 2007, 46, 734-739.
  74. E. J. Yurkow and M. A. McKenzie, Cytometry, 1993, 14, 287.
  75. M. Tsuchiya and M. Suematsu, Methods Enzymol., 1994, 233, 128.
  76. Dalton Transactions Paper