Injection of human umbilical tissue-derived cells into the nucleus pulposus alters the course of intervertebral disc degeneration in vivo (original) (raw)
Related papers
Bone & joint research, 2013
Mesenchymal stem-cell based therapies have been proposed as novel treatments for intervertebral disc degeneration, a prevalent and disabling condition associated with back pain. The development of these treatment strategies, however, has been hindered by the incomplete understanding of the human nucleus pulposus phenotype and by an inaccurate interpretation and translation of animal to human research. This review summarises recent work characterising the nucleus pulposus phenotype in different animal models and in humans and integrates their findings with the anatomical and physiological differences between these species. Understanding this phenotype is paramount to guarantee that implanted cells restore the native functions of the intervertebral disc.
European Spine Journal, 2012
Purpose Disc degeneration, and associated low back pain, are a primary cause of disability. Disc degeneration is characterized by dysfunctional cells and loss of proteoglycans: since intervertebral tissue has a limited capacity to regenerate, this process is at present considered irreversible. Recently, cell therapy has been suggested to provide more successful treatment of IVD degeneration. To understand the potential of cells to restore IVD structure/function, tissue samples from degenerated IVD versus healthy discs have been compared. Methods Discal tissue from 27 patients (40.17 ± 11 years) undergoing surgery for degenerative disc disease (DDD), DDD ? herniation and congenital scoliosis, as controls, was investigated. Cells and matrix in the nucleus pulposus (NP) and annulus fibrosus (AF) were characterized by histology. AF-and NP-derived cells were isolated, expanded and characterized for senescence and gene expression. Three-dimensional NP pellets were cultured and stained for glycosaminoglycan formation. Results Phenotypical markers of degeneration, such as cell clusters, chondrons, and collagen disorganization were seen in the degenerate samples. In severe degeneration, granulation tissue and peripheral vascularization were observed. No correlation was found between the Pfirrmann clinical score and the extent of degeneration. Conclusion The tissue disorganization in degenerate discs and the paucity of cells out of cluster/chondron association, make the IVD-derived cells an unreliable option for disc regeneration.
European Spine Journal, 2014
Cell-based regenerative medicine therapies have been proposed for repairing the degenerated intervertebral disc (a major cause of back pain). However, for this approach to be successful, it is essential to characterise the phenotype of its native cells to guarantee that implanted cells differentiate and maintain the correct phenotype to ensure appropriate cell and tissue function. While recent studies have increased our knowledge of the human nucleus pulposus (NP) cell phenotype, their ontogeny is still unclear. The expression of notochordal markers by a subpopulation of adult NP cells suggests that, contrary to previous reports, notochord-derived cells are retained in the adult NP, possibly coexisting with a second population of cells originating from the annulus fibrosus or endplate. It is not known, however, how these two cell populations interact and their specific role(s) in disc homeostasis and disease. In particular, notochordal cells are proposed to display both anabolic and protective roles; therefore, they may be the ideal cells to repair the degenerate disc. Thus, understanding the ontogeny of the adult NP cells is paramount, as it will inform the medical and scientific communities as to the ideal phenotype to implant into the degenerate disc and the specific pathways involved in stem cell differentiation towards such a phenotype. Keywords Intervertebral disc degeneration Á Back pain Á Nucleus pulposus Á Notochordal cells Á Notochord Á Ontogeny Á Phenotype Á Mesenchymal stem cells Á Regenerative medicine
Cell therapy for the degenerating intervertebral disc
Translational research : the journal of laboratory and clinical medicine, 2016
Spinal conditions related to intervertebral disc (IVD) degeneration cost billions of dollars in the US annually. Despite the prevalence and soaring cost, there is no specific treatment that restores the physiological function of the diseased IVD. Thus, it is vital to develop new treatment strategies to repair the degenerating IVD. Persons with IVD degeneration without back pain or radicular leg pain often do not require any intervention. Only patients with severe back pain related to the IVD degeneration or biomechanical instability are likely candidates for cell therapy. The IVD progressively degenerates with age in humans, and strategies to repair the IVD depend on the stage of degeneration. Cell therapy and cell-based gene therapy aim to address moderate disc degeneration; advanced stage disease may require surgery. Studies involving autologous, allogeneic, and xenogeneic cells have all shown good survival of these cells in the IVD, confirming that the disc niche is an immunologi...
Development of a whole organ culture model for intervertebral disc disease
Journal of Orthopaedic Translation, 2016
Background/Objective: Whole organ in vitro intervertebral disc models have been associated with poor maintenance of cell viability. No previous studies have used a rotating wall vessel bioreactor for intervertebral disc explants culture. The purpose of this study was to develop and validate an in vitro model for the assessment of biological and biomechanical measures of intervertebral disc health and disease. Methods: To this end, endplate-intervertebral disc-endplate whole organ explants were harvested from the tails of rats. For the injured group, the annulus fibrosus was penetrated with a 20G needle to the nucleus pulposus and aspirated. Explants were cultured in a rotating wall vessel bioreactor for 14 days. Results: Cell viability and histologic assessments were performed at Day 0, Day 1, Day 7, and Day 14. Compressive mechanical properties of the intervertebral disc were assessed at Day 0 and Day 14. In the annulus fibrosus and nucleus pulposus cells, the uninjured group maintained high viability through 14 days of culture, whereas cell viability in annulus fibrosus and nucleus pulposus of the injured intervertebral discs was markedly lower at Day 7 and Day 14. Histologically, the uninjured intervertebral discs maintained cell viability and tissue morphology and architecture through 14 days, whereas the injured intervertebral discs showed areas of cell death, loss of extracellular matrix integrity, and architecture by Day 14. Stiffness values for uninjured intervertebral discs were similar at Day 0 and Day 14, whereas the stiffness for the injured intervertebral discs was approximately 2.5 times greater at Day 14. Conclusion: These results suggest that whole organ intervertebral discs explants can be successfully cultured in a rotating wall vessel bioreactor to maintain cell viability and tissue architecture in both annulus fibrosus and nucleus pulposus for at least 14 days. In addition, the
A biological approach to treating disc degeneration: not for today, but maybe for tomorrow
Arthroplasty of the Spine, 2004
Intervertebral discs are characterized by their abundant extracellular matrix and low cell density, coupled with an absence of blood vessels, lymphatics, and nerves in all but the most peripheral annulus layers. In many respects, this absence leaves the disc prone to degeneration, because the cells have a large extracellular matrix to maintain without nociceptive feedback to limit and detect damage, and no source of repair through the vasculature.
Spine, 2009
Study Design. Experimental and descriptive study of a xenotransplantation model in minipigs. Objective. To study survival and function of human mesenchymal stem cells (hMSCs) after transplantation into injured porcine spinal discs, as a model for cell therapy. Summary of Background Data. Biologic treatment options of the intervertebral disc are suggested for patients with chronic low back pain caused by disc degeneration. Methods. Three lumbar discs in each of 9 minipigs were injured by aspiration of the nucleus pulposus (NP), 2 weeks later hMSCs were injected in F12 media suspension (cell/med) or with a hydrogel carrier (Puramatrix) (cell/gel). The animals were sacrificed after 1, 3, or 6 months. Disc appearance was visualized by magnetic resonance imaging. Immunohistochemistry methods were used to detect hMSCs by antihuman nuclear antibody staining, and further performed for Collagen II, Aggrecan, and Collagen I. SOX 9, Aggrecan, Versican, Collagen IA, and Collagen IIA and Collagen IIB human mRNA expression was analyzed by real-time PCR. Results. At magnetic resonance imaging all injured discs demonstrated degenerative signs. Cell/gel discs showed fewer changes compared with cell/med discs and only injured discs at later time points. hMSCs were detected in 9 of 10 of the cell/gel discs and in 8 of 9 of the cell/med discs. Immunostaining for Aggrecan and Collagen type II expression were observed in NP after 3 and 6 months in gel/cell discs and colocalized with the antihuman nuclear antibody. mRNA expression of Collagen IIA, Collagen IIB, Versican, Collagen 1A, Aggrecan, and SOX9 were detected in both cell/med and cell/gel discs at the time points 3 and 6 months by real-time PCR. Conclusion. hMSCs survive in the porcine disc for at least 6 months and express typical chondrocyte markers suggesting differentiation toward disc-like cells. As in autologous animal models the combination with a three-dimensional-hydrogel carrier seems to facilitate differentiation and survival of MSCs in the disc. Xenotransplantation seems to be valuable in evaluating the possibility for human cell therapy treatment for intervertebral discs.