Bactericidal activity of black silicon (original) (raw)
Related papers
Applied Physics Letters, 2017
The recently discovered bactericidal properties of nanostructures on wings of insects such as cicadas and dragonflies have inspired the development of similar nanostructured surfaces for antibacterial applications. Since most antibacterial applications require nanostructures covering a considerable amount of area, a practical fabrication method needs to be cost-effective and scalable. However, most reported nanofabrication methods require either expensive equipment or a high temperature process, limiting cost efficiency and scalability. Here, we report a simple, fast, low-cost, and scalable antibacterial surface nanofabrication methodology. Our method is based on metal-assisted chemical etching that only requires etching a single crystal silicon substrate in a mixture of silver nitrate and hydrofluoric acid for several minutes. We experimentally studied the effects of etching time on the morphology of the silicon nanospikes and the bactericidal properties of the resulting surface. W...
The multi-faceted mechano-bactericidal mechanism of nanostructured surfaces
Proceedings of the National Academy of Sciences
The mechano-bactericidal activity of nanostructured surfaces has become the focus of intensive research toward the development of a new generation of antibacterial surfaces, particularly in the current era of emerging antibiotic resistance. This work demonstrates the effects of an incremental increase of nanopillar height on nanostructure-induced bacterial cell death. We propose that the mechanical lysis of bacterial cells can be influenced by the degree of elasticity and clustering of highly ordered silicon nanopillar arrays. Herein, silicon nanopillar arrays with diameter 35 nm, periodicity 90 nm and increasing heights of 220, 360, and 420 nm were fabricated using deep UV immersion lithography. Nanoarrays of 360-nm-height pillars exhibited the highest degree of bactericidal activity toward both Gram stain-negativePseudomonas aeruginosaand Gram stain-positiveStaphylococcus aureusbacteria, inducing 95 ± 5% and 83 ± 12% cell death, respectively. At heights of 360 nm, increased nanopi...
Scientific reports, 2017
Black silicon (bSi) wafers with a high density of high-aspect ratio nanopillars have recently been suggested to have mechanical bactericidal activity. However, it remains unclear whether bSi with the nanopillars can kill only growing bacterial cells or also dormant spores that are harder to kill. We have reexamined the cidal activity of bSi on growing cells, dormant and germinated spores of B. subtilis, and dormant spores of several other Bacillus species by incubation on bSi wafers with and without nanopillars. We found that the bSi wafers with nanopillars were indeed very effective in rupturing and killing the growing bacterial cells, while wafers without nanopillars had no bactericidal effect. However, bSi wafers with or without nanopillars gave no killing or rupture of dormant spores of B. subtilis, Bacillus cereus or Bacillus megaterium, although germinated B. subtilis spores were rapidly killed. This work lays a foundation for novel bactericidal applications of bSi by elucidat...
Biomimetic Nanopillar Silicon Surfaces Rupture Fungal Spores
International Journal of Molecular Sciences
The mechano-bactericidal action of nanostructured surfaces is well-documented; however, synthetic nanostructured surfaces have not yet been explored for their antifungal properties toward filamentous fungal species. In this study, we developed a biomimetic nanostructured surface inspired by dragonfly wings. A high-aspect-ratio nanopillar topography was created on silicon (nano-Si) surfaces using inductively coupled plasma reactive ion etching (ICP RIE). To mimic the superhydrophobic nature of insect wings, the nano-Si was further functionalised with trichloro(1H,1H,2H,2H-perfluorooctyl)silane (PFTS). The viability of Aspergillus brasiliensis spores, in contact with either hydrophobic or hydrophilic nano-Si surfaces, was determined using a combination of standard microbiological assays, confocal laser scanning microscopy (CLSM), and focused ion beam scanning electron microscopy (FIB-SEM). Results indicated the breakdown of the fungal spore membrane upon contact with the hydrophilic n...
Selective Adhesion of Bacillus cereus Spores on Heterogeneously Wetted Silicon Nanowires
Langmuir, 2010
The article reports on the selective adhesion of Bacillus cereus spores on patterned and heterogeneously wetted superhydrophobic silicon nanowires surfaces. Superhydrophilic patterns on superhydrophobic silicon nanowire (SiNW) surfaces were prepared by a standard optical lithography technique. Exposure of the patterned surface to a suspension of B. cereus spores in water led to their specific adsorption in superhydrophobic areas. Comparable results were obtained on a patterned hydrophobic/hydrophilic flat silicon (Si) surface even though a higher concentration of spores was observed on the hydrophobic areas, as compared to the superhydrophobic regions of the SiNW substrate. The surfaces were characterized using scanning electron microscopy (SEM), fluorescence spectroscopy, and contact angle measurements.
Nanodarts, nanoblades, and nanospikes: Mechano-bactericidal nanostructures and where to find them
Advances in colloid and interface science, 2018
Over the past ten years, a next-generation approach to combat bacterial contamination has emerged: one which employs nanostructure geometry to deliver lethal mechanical forces causing bacterial cell death. In this review, we first discuss advances in both colloidal and topographical nanostructures shown to exhibit such "mechano-bactericidal" mechanisms of action. Next, we highlight work from pioneering research groups in this area of antibacterials. Finally, we provide suggestions for unexplored research topics that would benefit the field of mechano-bactericidal nanostructures. Traditionally, antibacterial materials are loaded with antibacterial agents with the expectation that these agents will be released in a timely fashion to reach their intended bacterial metabolic target at a sufficient concentration. Such antibacterial approaches, generally categorized as chemical-based, face design drawbacks as compounds diffuse in all directions, leach into the environment, and r...
High Aspect Ratio Nanostructures Kill Bacteria via Storage and Release of Mechanical Energy
ACS nano, 2018
The threat of a global rise in the number of untreatable infections caused by antibiotic-resistant bacteria calls for the design and fabrication of a new generation of bactericidal materials. Here, we report a concept for the design of antibacterial surfaces, whereby cell death results from the ability of the nanofeatures to deflect when in contact with attaching cells. We show, using three-dimensional transmission electron microscopy, that the exceptionally high aspect ratio (100-3000) of vertically aligned carbon nanotubes (VACNTs) imparts extreme flexibility, which enhances the elastic energy storage in CNTs as they bend in contact with bacteria. Our experimental and theoretical analyses demonstrate that, for high aspect ratio structures, the bending energy stored in the CNTs is a substantial factor for the physical rupturing of both Gram-positive and Gram-negative bacteria. The highest bactericidal rates (99.3% for Pseudomonas aeruginosa and 84.9% for Staphylococcus aureus) were...