Structural and Optical Emission Uniformity of m‑Plane InGaN Single Quantum Wells in Core−Shell Nanorods (original) (raw)

Evolution of the m‑Plane Quantum Well Morphology and Composition within a GaN/InGaN Core−Shell Structure

GaN/InGaN core−shell nanorods are promising for optoelectronic applications due to the absence of polarization-related electric fields on the sidewalls, a lower defect density, a larger emission volume, and strain relaxation at the free surfaces. The core−shell geometry allows the growth of thicker InGaN shell layers, which would improve the efficiency of light emitting diodes. However, the growth mode of such layers by metal organic vapor phase epitaxy is poorly understood. Through a combination of nanofabrication, epitaxial growth, and detailed characterization, this work reveals an evolution in the growth mode of InGaN epitaxial shells, from a two-dimensional (2D) growth mode to three-dimensional (3D) striated growth without additional line defect formation with increasing layer thickness. Measurements of the indium distribution show fluctuations along the <10−10> directions, with low and high indium composition associated with the 2D and 3D growth modes, respectively. Atomic steps at the GaN/InGaN core−shell interface were observed to occur with a similar frequency as quasi-periodic indium fluctuations along [0001] observed within the 2D layer, to provide evidence that the resulting local strain relief at the steps acts as the trigger for a change of growth mode by elastic relaxation. This study demonstrates that misfit dislocation generation during the growth of wider InGaN shell layers can be avoided by using pre-etched GaN nanorods. Significantly, this enables the growth of absorption-based devices and light-emitting diodes with emissive layers wide enough to mitigate efficiency droop.

Multi-wavelength emission from a single InGaN/GaN nanorod analyzed by cathodoluminescence hyperspectral imaging

Scientific reports, 2018

Multiple luminescence peaks emitted by a single InGaN/GaN quantum-well(QW) nanorod, extending from the blue to the red, were analysed by a combination of electron microscope based imaging techniques. Utilizing the capability of cathodoluminescence hyperspectral imaging it was possible to investigate spatial variations in the luminescence properties on a nanoscale. The high optical quality of a single GaN nanorod was demonstrated, evidenced by a narrow band-edge peak and the absence of any luminescence associated with the yellow defect band. Additionally two spatially confined broad luminescence bands were observed, consisting of multiple peaks ranging from 395 nm to 480 nm and 490 nm to 650 nm. The lower energy band originates from broad c-plane QWs located at the apex of the nanorod and the higher energy band from the semipolar QWs on the pyramidal nanorod tip. Comparing the experimentally observed peak positions with peak positions obtained from plane wave modelling and 3D finite ...

Optical Properties of GaN Nanorods Containing a Single or Multiple InGaN Quantum Wells

Japanese Journal of Applied Physics, 2013

Measurements of light emission from GaN nanorods of diameter between 80 and 350 nm, containing either a three-well multiple InGaN quantum well or a single quantum well, have been performed by photoluminescence (PL) and cathodoluminescence (CL) hyperspectral imaging. The PL underwent a Stark shift to the blue as the nanorod diameter was reduced, indicating substantial relaxation of the compressive strain in the quantum wells. The intensity of the nanorod emission per unit area can exceed that of the planar starting material. The CL measurements revealed that the wavelength of the quantum well emission varied with radial position in the nanorod. Simulations by a modal expansion method revealed that the light extraction efficiency varies with radial position and the variation is dependent on nanorod diameter. Finite difference time domain simulations showed that Bloch mode formation in the buffer layer below the nanorods impacts on the light extraction.

Structural, electronic, and optical properties of m-plane InGaN/GaN quantum wells: Insights from experiment and atomistic theory

In this paper we present a detailed analysis of the structural, electronic, and optical properties of an m-plane (In,Ga)N/GaN quantum well structure grown by metal organic vapor phase epitaxy. The sample has been structurally characterized by x-ray diffraction, scanning transmission electron microscopy, and 3D atom probe tomography. The optical properties of the sample have been studied by photoluminescence (PL), time-resolved PL spectroscopy, and polarized PL excitation spectroscopy. The PL spectrum consisted of a very broad PL line with a high degree of optical linear polarization. To understand the optical properties we have performed atomistic tight-binding calculations, and based on our initial atom probe tomography data, the model includes the effects of strain and built-in field variations arising from random alloy fluctuations. Furthermore, we included Coulomb effects in the calculations. Our microscopic theoretical description reveals strong hole wave function localization effects due to random alloy fluctuations, resulting in strong variations in ground state energies and consequently the corresponding transition energies. This is consistent with the experimentally observed broad PL peak. Furthermore, when including Coulomb contributions in the calculations we find strong exciton localization effects which explain the form of the PL decay transients. Additionally, the theoretical results confirm the experimentally observed high degree of optical linear polarization. Overall, the theoretical data are in very good agreement with the experimental findings, highlighting the strong impact of the microscopic alloy structure on the optoelectronic properties of these systems.

Optical Properties of A-Plane InGaN/GaN Multiple Quantum Wells Grown on Nanorod Lateral Overgrowth Templates

IEEE Journal of Quantum Electronics, 2000

A-plane In x Ga 1−x N / GaN ͑x = 0.09, 0.14, 0.24, and 0.3͒ multiple-quantum-wells ͑MQWs͒ samples, with a well width of about 4.5 nm, were achieved by utilizing r-plane sapphire substrates. Optical quality was investigated by means of photoluminescence ͑PL͒, cathodoluminescence, and time resolved PL measurements ͑TRPL͒. Two distinguishable emission peaks were examined from the low temperature PL spectra, where the high-and low-energy peaks were ascribed to quantum wells and localized states, respectively. Due to an increase in the localized energy states and absence of quantum confined Stark effect, the quantum efficiency was increased with increasing indium composition up to 24%. As the indium composition reached 30%, however, pronounced deterioration in luminescence efficiency was observed. The phenomenon could be attributed to the high defect densities in the MQWs resulted from the increased accumulation of strain between the InGaN well and GaN barrier. This argument was verified from the much shorter carrier lifetime at 15 K and smaller activation energy for In 0.3 Ga 0.7 N / GaN MQWs. In addition, the polarization-dependent PL revealed that the degree of polarization decreased with increasing indium compositions because of the enhancement of zero-dimensional nature of the localizing centers. Our detailed investigations indicate that the indium content in a-plane InGaN/GaN MQWs not only has an influence on optical performance, but is also important for further application of nitride semiconductors.

Optical studies of non-polar m-plane (1-100) InGaN/GaN multi-quantum wells grown on freestanding bulk GaN

We report on the optical properties of non-polar m-plane InGaN/GaN multi-quantum wells (MQWs) grown on ammonothermal bulk GaN substrates. The low temperature continuous wave (CW) photoluminescence spectra are broad with a characteristic low energy tail. The majority of the emission bands decay with a time constant ~300 ps, but detailed photoluminescence time decay and time resolved spectroscopy measurements revealed the existence of a distinct slowly decaying emission band. This slowly decaying component is responsible for the low energy tails observed in the CW spectra. Scanning electron microscopy–cathodo­luminescence (SEM-CL) studies show that the low energy emission band originates from regions across step-bunches, which are associated to the GaN substrate miscut. Subsequent scanning transmission electron microscopy imaging demonstrates that semi-polar QWs had formed continuous layers on the step bunches between the m-plane QWs and were responsible for the slower decaying, low energy emission band. Thus we assign the asymmetric low energy emission tails observed in photoluminescence studies to the formation of semi-polar facet QWs across the step bunches associated with the GaN miscut.

Structural and optical properties of InGaN/GaN layers close to the critical layer thickness

Applied Physics Letters, 2002

Structural and optical properties of InGaN / GaN multiple quantum wells ͑MQWs͒ grown on nano-air-bridged GaN template by metal organic chemical vapor deposition were investigated. The InGaN / GaN MQWs on nano-air-bridged GaN demonstrate much better surface morphology, revealing low defect density ϳ4 ϫ 10 8 cm −2 with step flow features measured by atomic force microscopy. The photoluminescence measurement shows one magnitude higher in intensity from less defective InGaN MQWs compared to that of the control InGaN MQWs. The improvement in photoluminescence of the InGaN MQWs is benefited from the reduction of threading dislocation density in the InGaN / GaN active layers and GaN template, revealed from cross-sectional transmission electron microscopy. High resolution x-ray diffraction analysis results show higher indium mole fraction in the MQWs when grown on nano-air-bridged GaN template, due to the strain relaxation in the nano-air-bridged GaN template. This higher indium incorporation is consistent with the redshift of the photoluminescence peak.

Temporally and spatially resolved photoluminescence investigation of (112¯ 2) semi-polar InGaN/GaN multiple quantum wells grown on nanorod templates

By means of time-resolved photoluminescence (PL) and confocal PL measurements, temporally and spatially resolved optical properties have been investigated on a number of In x Ga 1Àx N/GaN multiple-quantum-well (MQW) structures with a wide range of indium content alloys from 13% to 35% on ð11 22Þ semi-polar GaN with high crystal quality, obtained through overgrowth on nanorod templates. With increasing indium content, the radiative recombination lifetime initially increases as expected, but decreases if the indium content further increases to 35%, corresponding to emission in the green spectral region. The reduced radiative recombination lifetime leads to enhanced optical performance for the high indium content MQWs as a result of strong exciton localization, which is different from the behaviour of c-plane InGaN/GaN MQWs, where quantum confined Stark effect plays a dominating role in emission process. V

Three-Dimensional Mapping of Quantum Wells in a GaN/InGaN Core–Shell Nanowire Light-Emitting Diode Array

Nano Letters, 2013

Correlated atom probe tomography, crosssectional scanning transmission electron microscopy, and cathodoluminescence spectroscopy are used to analyze InGaN/GaN multiquantum wells (QWs) in nanowire array light-emitting diodes (LEDs). Tomographic analysis of the In distribution, interface morphology, and dopant clustering reveals material quality comparable to that of planar LED QWs. The position-dependent CL emission wavelength of the nonpolar side-facet QWs and semipolar top QWs is correlated with In composition.

Multi-section core-shell InGaN/GaN quantum-well nanorod light-emitting diode array

Optics express, 2015

The growth of a two-section, core-shell, InGaN/GaN quantum-well (QW) nanorod- (NR-) array light-emitting diode device based on a pulsed growth technique with metalorganic chemical vapor deposition is demonstrated. A two-section n-GaN NR is grown through a tapering process for forming two uniform NR sections of different cross-sectional sizes. The cathodoluminescence (CL), photoluminescence (PL), and electrolumines-cence (EL) characterization results of the two-section NR structure are compared with those of a single-section NR sample, which is prepared under the similar condition to that for the first uniform NR section of the two-section sample. All the CL, PL, and EL spectra of the two-section sample (peaked between 520 and 525 nm) are red-shifted from those of the single-section sample (peaked around 490 nm) by >30 nm in wavelength. Also, the emitted spectral widths of the two-section sample become significantly larger than their counterparts of the single-section sample. The ...