HAUSGARTEN: Multidisciplinary Investigations at a Deep-Sea, Long-Term Observatory in the Arctic Ocean (original) (raw)
Related papers
Biological response to climate change in the Arctic Ocean: the view from the past
The Arctic Ocean is undergoing rapid climatic changes including higher ocean temperatures, reduced sea ice, glacier and Greenland Ice Sheet melting, greater marine productivity, and altered carbon cycling. Until recently, the relationship between climate and Arctic biological systems was poorly known, but this has changed substantially as advances in paleoclimatology, micropale-ontology, vertebrate paleontology, and molecular genetics show that Arctic ecosystem history reflects global and regional climatic changes over all timescales and climate states (10 3 –10 7 years). Arctic climatic extremes include 25 °C hyperthermal periods during the Paleocene-Eocene (56–46 million years ago, Ma), Quaternary glacial periods when thick ice shelves and sea ice cover rendered the Arctic Ocean nearly uninhabitable, seasonally sea-ice-free interglacials and abrupt climate reversals. Climate-driven biological impacts included large changes in species diversity, primary productivity, species' geographic range shifts into and out of the Arctic, community restructuring, and possible hybridization, but evidence is not sufficient to determine whether or when major episodes of extinction occurred.
Frontiers in Marine Science, 2023
In 2011, a first comprehensive assessment of the footprints of climate change on Arctic marine ecosystems (such as altered distribution ranges, abundances, growth and body conditions, behaviours and phenologies, as well as community and regime shifts) was published. Here, we reassess the climate-driven impacts reported since then, to elucidate to which extent and how observed ecological footprints have changed in the following decade (2011 to 2021). In total, 98 footprints have been described and analysed. Most of those impacts reported in the 2011 assessment are reconfirmed and can, hence, be assumed as continuing trends. In addition, novel footprints (behavioural changes, diet changes, altered competition and pathogen load) are described. As in 2011, most reported footprints are related to changes in distribution ranges, abundances, biomass and production. Range shifts have mostly been observed for fish species, while behavioural changes have mainly been reported for mammals. Primary production has been observed to further increase in Arctic seas. The footprints on pelagic herbivores, particularly the key species Calanus spp., are less clear. In comparison to 2011, more complex, cascading effects of climate change, such as increased bowhead whale body conditions due to increased primary production, have been reported. The observed footprints, and the trends that they indicate, strongly suggest that due to further northward range shifts of sub-Arctic and boreal species Arctic seas are likely to experience increasing species richness in the future. However, a tipping point may be reached, characterized by subsequent biodiversity decline, when Arctic-endemic species will go extinct as ocean warming and/or acidification will exceed their physiological adaptation capacity. Furthermore, as invading boreal species have a competitive advantage due to their wider physiological and trophic range, Arctic species abundances are predicted to decrease. Overall, the future Arctic Ocean will very likely experience increasing numbers and intensities of climate-change footprints.
The changing climate of the Arctic
2008
The first and strongest signs of global-scale climate change exist in the high latitudes of the planet. Evidence is now accumulating that the Arctic is warming, and responses are being observed across physical, biological, and social systems. The impact of climate change on oceanographic, sea-ice, and atmospheric processes is demonstrated in observational studies that highlight changes in temperature and salinity, which influence global oceanic circulation, also known as thermohaline circulation, as well as a continued decline in sea-ice extent and thickness, which influences communication between oceanic and atmospheric processes. Perspectives from Inuvialuit community representatives who have witnessed the effects of climate change underline the rapidity with which such changes have occurred in the North. An analysis of potential future impacts of climate change on marine and terrestrial ecosystems underscores the need for the establishment of effective adaptation strategies in the Arctic. Initiatives that link scientific knowledge and research with traditional knowledge are recommended to aid Canada's northern communities in developing such strategies.
Biogeochemical consequences of a changing Arctic shelf seafloor ecosystem
AMBIO, 2022
Unprecedented and dramatic transformations are occurring in the Arctic in response to climate change, but academic, public, and political discourse has disproportionately focussed on the most visible and direct aspects of change, including sea ice melt, permafrost thaw, the fate of charismatic megafauna, and the expansion of fisheries. Such narratives disregard the importance of less visible and indirect processes and, in particular, miss the substantive contribution of the shelf seafloor in regulating nutrients and sequestering carbon. Here, we summarise the biogeochemical functioning of the Arctic shelf seafloor before considering how climate change and regional adjustments to human activities may alter its biogeochemical and ecological dynamics, including ecosystem function, carbon burial, or nutrient recycling. We highlight the importance of the Arctic benthic system in mitigating climatic and anthropogenic change and, with a focus on the Barents Sea, offer some observations and our perspectives on future management and policy.
Footprints of climate change in the Arctic marine ecosystem
Global Change Biology, 2011
In this article, we review evidence of how climate change has already resulted in clearly discernable changes in marine Arctic ecosystems. After defining the term 'footprint' and evaluating the availability of reliable baseline information we review the published literature to synthesize the footprints of climate change impacts in marine Arctic ecosystems reported as of mid-2009. We found a total of 51 reports of documented changes in Arctic marine biota in response to climate change. Among the responses evaluated were range shifts and changes in abundance, growth/condition, behaviour/phenology and community/regime shifts. Most reports concerned marine mammals, particularly polar bears, and fish. The number of well-documented changes in planktonic and benthic systems was surprisingly low. Evident losses of endemic species in the Arctic Ocean, and in ice algae production and associated community remained difficult to evaluate due to the lack of quantitative reports of its abundance and distribution. Very few footprints of climate change were reported in the literature from regions such as the wide Siberian shelf and the central Arctic Ocean due to the limited research effort made in these ecosystems. Despite the alarming nature of warming and its strong potential effects in the Arctic Ocean the research effort evaluating the impacts of climate change in this region is rather limited.