On the product of a nilpotent group and a group with non-trivial center (original) (raw)
Abstract
It is proved that a finite group G = AB which is a product of a nilpotent subgroup A and a subgroup B with non-trivial center contains a non-trivial abelian normal subgroup.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (25)
- B. Abe, N. Iiyori, A generalization of prime graphs of finite groups, Hokkaido Math. J. 29 (2000) 391-407.
- B. Amberg, A. Carocca, L. Kazarin, Criteria for the solubility and non-simplicity of finite groups, J. Algebra 285 (2005) 58-72.
- B. Amberg, S. Franciosi, F. de Giovanni, Products of Groups, Clarendon Press, Oxford, 1992.
- Z. Arad, E. Fisman, A proof of Szep's conjecture on nonsimplicity of certain finite groups, J. Algebra 108 (1987) 340-354.
- W. Burnside, On groups of order p a q b , Proc. London Math. Soc. 2 (1904) 388-392.
- J. Conway, R.T. Curtis, S. Norton, R. Parker, R. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
- C.W. Curtis, W.M. Kantor, G.M. Seitz, The 2-transitive permutation representations of the finite Chevalley groups, Trans. Amer. Math. Soc. 218 (1976) 1-59.
- D. Gorenstein, R. Lyons, The local 2-structure of groups of characteristic 2 type, Mem. Amer. Math. Soc. 42 (276) (1983).
- B. Huppert, Endliche Gruppen I, Springer, Berlin, 1967.
- N. Iiyori, H. Yamaki, Prime graph components of the simple groups of Lie type of even characteristic, J. Algebra 155 (1993) 335-343.
- N. Iiyori, p-Solvability and a generalization of prime graphs of finite groups, Comm. Algebra 30 (2002) 1679-1691.
- N. Ito, Über das Produkt von zwei abelschen Gruppen, Math. Z. 62 (1955) 400-401.
- L.S. Kazarin, Groups which are the product of two solvable subgroups, Comm. Algebra 14 (1986) 1001-1066.
- L.S. Kazarin, On a problem of Szép, Math. USSR Izv. 28 (3) (1987) 467-495.
- L.S. Kazarin, The product of a group with a cyclic Sylow p-subgroup and a group with a nontrivial center, Ukrainian Math. J. 44 (1993) 697-702.
- L.S. Kazarin, On Burnside's p α -lemma, Mat. Zametki 44 (1991) 697-702.
- O.H. Kegel, Produkte nilpotenter Gruppen, Arch. Math. 12 (1961) 90-93.
- P.B. Kleidman, The maximal subgroups of the finite 8-dimensional orthogonal groups PΩ + 8 (q) and their automor- phism groups, J. Algebra 110 (1987) 173-242.
- A.S. Kondrat'ev, Prime graph components of finite simple groups, Math. USSR Sb. 67 (1990) 235-247.
- M.W. Liebeck, C.E. Praeger, J. Saxl, The maximal factorizations of the finite simple groups and their automorphism group, Mem. Amer. Math. Soc. 86 (432) (1990).
- D.A. Suprunenko, Matrix Groups, Nauka, Moscow, 1972.
- J. Wiegold, A.G. Williamson, The factorization of the alternating and symmetric groups, Math. Z. 175 (1980) 171- 179.
- H. Wielandt, Über Produkte von nilpotenter Gruppen, Illinois J. Math. 2 (1958) 611-618.
- J.S. Williams, Prime graph components of finite groups, J. Algebra 69 (1981) 487-513.
- K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. Phys. 3 (1892) 265-284.