On the product of a nilpotent group and a group with non-trivial center (original) (raw)

Abstract

It is proved that a finite group G = AB which is a product of a nilpotent subgroup A and a subgroup B with non-trivial center contains a non-trivial abelian normal subgroup.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (25)

  1. B. Abe, N. Iiyori, A generalization of prime graphs of finite groups, Hokkaido Math. J. 29 (2000) 391-407.
  2. B. Amberg, A. Carocca, L. Kazarin, Criteria for the solubility and non-simplicity of finite groups, J. Algebra 285 (2005) 58-72.
  3. B. Amberg, S. Franciosi, F. de Giovanni, Products of Groups, Clarendon Press, Oxford, 1992.
  4. Z. Arad, E. Fisman, A proof of Szep's conjecture on nonsimplicity of certain finite groups, J. Algebra 108 (1987) 340-354.
  5. W. Burnside, On groups of order p a q b , Proc. London Math. Soc. 2 (1904) 388-392.
  6. J. Conway, R.T. Curtis, S. Norton, R. Parker, R. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
  7. C.W. Curtis, W.M. Kantor, G.M. Seitz, The 2-transitive permutation representations of the finite Chevalley groups, Trans. Amer. Math. Soc. 218 (1976) 1-59.
  8. D. Gorenstein, R. Lyons, The local 2-structure of groups of characteristic 2 type, Mem. Amer. Math. Soc. 42 (276) (1983).
  9. B. Huppert, Endliche Gruppen I, Springer, Berlin, 1967.
  10. N. Iiyori, H. Yamaki, Prime graph components of the simple groups of Lie type of even characteristic, J. Algebra 155 (1993) 335-343.
  11. N. Iiyori, p-Solvability and a generalization of prime graphs of finite groups, Comm. Algebra 30 (2002) 1679-1691.
  12. N. Ito, Über das Produkt von zwei abelschen Gruppen, Math. Z. 62 (1955) 400-401.
  13. L.S. Kazarin, Groups which are the product of two solvable subgroups, Comm. Algebra 14 (1986) 1001-1066.
  14. L.S. Kazarin, On a problem of Szép, Math. USSR Izv. 28 (3) (1987) 467-495.
  15. L.S. Kazarin, The product of a group with a cyclic Sylow p-subgroup and a group with a nontrivial center, Ukrainian Math. J. 44 (1993) 697-702.
  16. L.S. Kazarin, On Burnside's p α -lemma, Mat. Zametki 44 (1991) 697-702.
  17. O.H. Kegel, Produkte nilpotenter Gruppen, Arch. Math. 12 (1961) 90-93.
  18. P.B. Kleidman, The maximal subgroups of the finite 8-dimensional orthogonal groups PΩ + 8 (q) and their automor- phism groups, J. Algebra 110 (1987) 173-242.
  19. A.S. Kondrat'ev, Prime graph components of finite simple groups, Math. USSR Sb. 67 (1990) 235-247.
  20. M.W. Liebeck, C.E. Praeger, J. Saxl, The maximal factorizations of the finite simple groups and their automorphism group, Mem. Amer. Math. Soc. 86 (432) (1990).
  21. D.A. Suprunenko, Matrix Groups, Nauka, Moscow, 1972.
  22. J. Wiegold, A.G. Williamson, The factorization of the alternating and symmetric groups, Math. Z. 175 (1980) 171- 179.
  23. H. Wielandt, Über Produkte von nilpotenter Gruppen, Illinois J. Math. 2 (1958) 611-618.
  24. J.S. Williams, Prime graph components of finite groups, J. Algebra 69 (1981) 487-513.
  25. K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. Phys. 3 (1892) 265-284.