Enduring effects of chronic corticosterone treatment on spatial learning, synaptic plasticity, and hippocampal neuropathology in young and mid-aged rats (original) (raw)
Related papers
Aging increases basal but not stress-induced levels of corticosterone in the brain of the awake rat
Neurobiology of Aging, 2010
The main purpose of this study was to evaluate the effect of aging on plasma and free corticosterone (CORT) levels in the brain in basal conditions and in response to an acute stressor. Microdialysis experiments were performed in the hippocampus (HC) and the prefrontal cortex (PFC) of young adult (6 months) and aged (24 months) male Wistar rats. Basal free levels of CORT in the HC and the PFC were higher in aged animals. Restraint stress increased plasma CORT and free CORT levels in the HC and the PFC both in young and aged animals. However, while the increase of plasma CORT was higher in aged rats compared with young rats, the increases of free CORT in the HC and the PFC were not different between these two groups of rats. These results suggest that the changes produced by aging in the brain may be related to the enhanced basal levels of free CORT and not to the CORT increases in response to stress.
Physiological research / Academia Scientiarum Bohemoslovaca, 2010
We studied delayed effects of elevated plasma levels of corticosterone (Cort) on volumetry, neuronal quantity, and gross marks of neurodegeneration in the hippocampal formation of Long-Evans rats. Animals were exposed to increased CORT levels for three weeks via implanted subcutaneous pellets. Volumetry, neuronal quantification and gross marks of degeneration were measured seven weeks after the termination of CORT treatment. We observed significant differences in volumes and especially in laterality of hippocampal subfields between control and CORT-treated animals. We found that the left hippocampus was substantially larger than the right hippocampus in the corticosterone-treated group, but not in the control group. In the control group, on the other hand, right hippocampal volume was markedly higher than all other measured volumes (hippocampal left control, hippocampal left CORT-treated and hippocampal right CORT-treated). Left hippocampal volume did not differ between the groups.
Behavioural Brain Research, 2005
In the present study new-born rats were treated with corticosterone (CORT) between postnatal days 1 and 12. At the age of 16-20 weeks, these animals were tested for spatial learning capacity using an eight-arm radial maze. After behavioral testing, density of cholinergic fibers and sizes of the mossy fiber terminal fields in the hippocampus and number of cholinergic and GABAergic neurons in the septal area were quantified. In the radial arm maze CORT-treated animals initially showed better working memory performance than controls. However, control animals showed a significant improvement of spatial working memory in the last trials and reached similar working memory scores as compared to treated animals. At neither day of training differences in reference memory errors were found between groups.
Dose-Response, 2006
ᮀ The relationship between glucocorticoids (GCs) and memory is complex, in that memory impairments can occur in response to manipulations that either increase or decrease GC levels. We investigated this issue by assessing the relationship between serum corticosterone (the primary rodent GC) and memory in rats trained in the radial arm water maze, a hippocampus-dependent spatial memory task. Each day, rats learned a new location of the hidden escape platform and then 30 min later their memory of the location of the platform was tested. Under control conditions, well-trained rats had excellent spatial memory and moderately elevated corticosterone levels (~26 µg/dl versus a baseline of ~2 µg/dl). Their memory was impaired when corticosterone levels were either reduced by metyrapone (a corticosterone synthesis inhibitor) or increased by acute stress (predator exposure), forming an overall U-shaped relationship between corticosterone levels and memory. We then addressed whether there was a causal relationship between elevated corticosterone levels and impaired memory. If elevated corticosterone levels were a sufficient condition to impair memory, then exogenously administered corticosterone, alone, should have impaired performance. However, we found that spatial memory was not impaired in corticosterone-injected rats that were not exposed to the cat. This work demonstrates that an intermediate level of corticosterone correlated with optimal memory, and either a decrease or an increase in corticosterone levels, in conjunction with strong emotionality, impaired spatial memory. These findings indicate that fear-provoking conditions, which are known to engage the amygdala, interact with stress levels of corticosterone to influence hippocampal functioning.
Dynamically changing effects of corticosteroids on human hippocampal and prefrontal processing
Human Brain Mapping, 2011
Stress has a powerful impact on memory. Corticosteroids, released in response to stress, are thought to mediate, at least in part, these effects by affecting neuronal plasticity in brain regions involved in memory formation, including the hippocampus and prefrontal cortex. Animal studies have delineated aspects of the underlying physiological mechanisms, revealing rapid, nongenomic effects facilitating synaptic plasticity, followed several hours later by a gene‐mediated suppression of this plasticity. Here, we tested the hypothesis that corticosteroids would also rapidly upregulate and slowly downregulate brain regions critical for episodic memory formation in humans. To target rapid and slow effects of corticosteroids on neural processing associated with memory formation, we investigated 18 young, healthy men who received 20 mg hydrocortisone either 30 or 180 min before a memory encoding task in a double‐blind, placebo‐controlled, counter‐balanced, crossover design. We used functio...
European Journal of Neuroscience, 2006
This study investigated whether chronic stress-induced spatial memory deficits were caused by changes in the hypothalamic-pituitary-adrenal axis, such as corticosterone (CORT) elevations on the day of memory assessment, rather than the consequence of structural changes in the hippocampus. Male Sprague–Dawley rats were restrained for 6 h/day/21 days, and spatial memory was assessed on the Y-maze on day 22. Ninety minutes before training, rats received a subcutaneous injection of vehicle or metyrapone, a CORT synthesis inhibitor, and then spatial memory was determined 4-h later. The highest dose of metyrapone (75 mg/kg, s.c.) was most effective at preventing stress-induced spatial memory deficits. Chronic stress increased total CORT levels following Y-maze exposure, while acute metyrapone treatment dose-dependently attenuated total and free (unbound) CORT levels in both stress and control conditions. Blood samples taken from a separate subset of chronically stressed rats showed that baseline CORT levels were similar across the restraint period. Finally, chronic stress down-regulated glucocorticoid, but not mineralocorticoid, receptor mRNA expression within the hippocampus (dentate gyrus, CA1, CA2, CA3). These findings suggest that chronic stress-induced spatial memory deficits may be mediated by hypothalamic-pituitary-adrenal axis dysregulation. Specifically, CORT elevations and reductions in hippocampal glucocorticoid receptor expression, at the time of behavioural assessment may be involved, as opposed to a direct effect that is solely dependent upon hippocampal structural changes. These results have significance for treating cognitive decline in conditions associated with elevated glucocorticoids that include subpopulations in ageing, depression, Cushing's disease and Alzheimer's disease.
Corticosteroid regulation of synaptic plasticity in the hippocampus
TheScientificWorldJournal, 2010
Stress, via release of steroid hormones, has been shown to affect several cellular functions in the brain, including synaptic receptors and ion channels. As such, corticosteroids were reported to modulate plasticity, expressed as long-term changes in reactivity to afferent stimulation. The classical view of the effects of stress on synaptic plasticity and cognitive functions assumes an inverted U-shape curve, such that a low stress level facilitates and a high stress level (i.e., corticosterone levels) impairs cognitive functions. This universal view has been challenged recently in a series of studies that show that stress and corticosterone have immediate and opposite effects on the ability to express long-term potentiation (LTP) in the dorsal and ventral sectors of the hippocampus. This differential role of stress may be related to the different functions associated with these sectors of the hippocampus. Herein, we review the known effects of stress hormones on cellular functions ...