Intrinsic Evaluations of Word Embeddngs: What Can We Do Better? (original) (raw)
Related papers
A Survey of Word Embeddings Evaluation Methods
Word embeddings are real-valued word representations able to capture lexical semantics and trained on natural language corpora. Models proposing these representations have gained popularity in the recent years, but the issue of the most adequate evaluation method still remains open. This paper presents an extensive overview of the field of word embeddings evaluation, highlighting main problems and proposing a typology of approaches to evaluation, summarizing 16 intrinsic methods and 12 extrinsic methods. I describe both widely-used and experimental methods, systematize information about evaluation datasets and discuss some key challenges.
How to evaluate word embeddings? On importance of data efficiency and simple supervised tasks
2017
Maybe the single most important goal of representation learning is making subsequent learning faster. Surprisingly, this fact is not well reflected in the way embeddings are evaluated. In addition, recent practice in word embeddings points towards importance of learning specialized representations. We argue that focus of word representation evaluation should reflect those trends and shift towards evaluating what useful information is easily accessible. Specifically, we propose that evaluation should focus on data efficiency and simple supervised tasks, where the amount of available data is varied and scores of a supervised model are reported for each subset (as commonly done in transfer learning). In order to illustrate significance of such analysis, a comprehensive evaluation of selected word embeddings is presented. Proposed approach yields a more complete picture and brings new insight into performance characteristics, for instance information about word similarity or analogy ten...
A Survey On Neural Word Embeddings
ArXiv, 2021
Understanding human language has been a sub-challenge on the way of intelligent machines. The study of meaning in natural language processing (NLP) relies on the distributional hypothesis where language elements get meaning from the words that co-occur within contexts. The revolutionary idea of distributed representation for a concept is close to the working of a human mind in that the meaning of a word is spread across several neurons, and a loss of activation will only slightly affect the memory retrieval process. Neural word embeddings transformed the whole field of NLP by introducing substantial improvements in all NLP tasks. In this survey, we provide a comprehensive literature review on neural word embeddings. We give theoretical foundations and describe existing work by an interplay between word embeddings and language modeling. We provide broad coverage on neural word embeddings, including early word embeddings, embeddings targeting specific semantic relations, sense embeddi...
Elucidating Conceptual Properties from Word Embeddings
Proceedings of the 1st Workshop on Sense, Concept and Entity Representations and their Applications
In this paper, we introduce a method of identifying the components (i.e. dimensions) of word embeddings that strongly signifies properties of a word. By elucidating such properties hidden in word embeddings, we could make word embeddings more interpretable, and also could perform property-based meaning comparison. With the capability, we can answer questions like "To what degree a given word has the property cuteness?" or "In what perspective two words are similar?". We verify our method by examining how the strength of property-signifying components correlates with the degree of prototypicality of a target word.
Improving Word Representations via Global Context and Multiple Word Prototypes
Unsupervised word representations are very useful in NLP tasks both as inputs to learning algorithms and as extra word features in NLP systems. However, most of these models are built with only local context and one representation per word. This is problematic because words are often polysemous and global context can also provide useful information for learning word meanings. We present a new neural network architecture which 1) learns word embeddings that better capture the semantics of words by incorporating both local and global document context, and 2) accounts for homonymy and polysemy by learning multiple embeddings per word. We introduce a new dataset with human judgments on pairs of words in sentential context, and evaluate our model on it, showing that our model outperforms competitive baselines and other neural language models. 1
How we BLESSed distributional semantic evaluation
We introduce BLESS, a data set specifically designed for the evaluation of distributional semantic models. BLESS contains a set of tuples instantiating different, explicitly typed semantic relations, plus a number of controlled random tuples. It is thus possible to assess the ability of a model to detect truly related word pairs, as well as to perform in-depth analyses of the types of semantic relations that a model favors. We discuss the motivations for BLESS, describe its construction and structure, and present examples of its usage in the evaluation of distributional semantic models.
CogniVal: A Framework for Cognitive Word Embedding Evaluation
Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL), 2019
An interesting method of evaluating word representations is by how much they reflect the semantic representations in the human brain. However, most, if not all, previous works only focus on small datasets and a single modality. In this paper, we present the first multimodal framework for evaluating English word representations based on cognitive lexical semantics. Six types of word embeddings are evaluated by fitting them to 15 datasets of eyetracking, EEG and fMRI signals recorded during language processing. To achieve a global score over all evaluation hypotheses, we apply statistical significance testing accounting for the multiple comparisons problem. This framework is easily extensible and available to include other intrinsic and extrinsic evaluation methods. We find strong correlations in the results between cognitive datasets, across recording modalities and to their performance on extrinsic NLP tasks.
The Limitations of Cross-language Word Embeddings Evaluation
Proceedings of the Seventh Joint Conference on Lexical and Computational Semantics, 2018
The aim of this work is to explore the possible limitations of existing methods of crosslanguage word embeddings evaluation, addressing the lack of correlation between intrinsic and extrinsic cross-language evaluation methods. To prove this hypothesis, we construct English-Russian datasets for extrinsic and intrinsic evaluation tasks and compare performances of 5 different cross-language models on them. The results say that the scores even on different intrinsic benchmarks do not correlate to each other. We can conclude that the use of human references as ground truth for cross-language word embeddings is not proper unless one does not understand how do native speakers process semantics in their cognition.
Lexical semantics enhanced neural word embeddings
Knowledge-Based Systems
Current breakthroughs in natural language processing have benefited dramatically from-neural language models, through which distributional semantics can leverage neural data representations to facilitate downstream applications. Since neural embeddings use context prediction on word co-occurrences to yield dense vectors, they are inevitably prone to capture more semantic association than semantic similarity. To improve vector space models in deriving semantic similarity, we post-process neural word embeddings through deep metric learning, through which we can inject lexical-semantic relations, including syn/antonymy and hypo/hypernymy, into a distributional space. We introduce hierarchy-fitting, a novel semantic specialization approach to modelling semantic similarity nuances inherently stored in the IS-A hierarchies. Hierarchy-fitting attains state-of-the-art results on the common-and rare-word benchmark datasets for deriving semantic similarity from neural word embeddings. It also incorporates an asymmetric distance function to specialize hypernymy's directionality explicitly, through which it significantly improves vanilla embeddings in multiple evaluation tasks of detecting hypernymy and directionality without negative impacts on semantic similarity judgement. The results demonstrate the efficacy of hierarchy-fitting in specializing neural embeddings with semantic relations in late fusion, potentially expanding its applicability to aggregating heterogeneous data and various knowledge resources for learning multimodal semantic spaces.
Evaluating Word Embeddings with Categorical Modularity
2021
We introduce categorical modularity, a novel low-resource intrinsic metric to evaluate word embedding quality. Categorical modularity is a graph modularity metric based on the k-nearest neighbor graph constructed with embedding vectors of words from a fixed set of semantic categories, in which the goal is to measure the proportion of words that have nearest neighbors within the same categories. We use a core set of 500 words belonging to 59 neurobiologically motivated semantic categories in 29 languages and analyze three word embedding models per language (FastText, MUSE, and subs2vec). We find moderate to strong positive correlations between categorical modularity and performance on the monolingual tasks of sentiment analysis and word similarity calculation and on the cross-lingual task of bilingual lexicon induction both to and from English. Overall, we suggest that categorical modularity provides non-trivial predictive information about downstream task performance, with breakdown...