Weak stability of switching dynamical systems and fast computation of the p-radius of matrices (original) (raw)

49th IEEE Conference on Decision and Control (CDC), 2010

Abstract

ABSTRACT The stability of a switching linear dynamical system is ruled by the so-called joint spectral radius of the set of matrices characterizing the dynamical system. In some situations, the system is not stable in the classical sense, but might still be stable in a weaker meaning. We introduce the new notion of weak stability or Lp-stability of a switched dynamical system based on the so-called p-radius of the set of matrices. The p-radius characterizes the average rate of growth of norms of matrices in a multiplicative semigroup. This quantity has found several applications in the recent years. We analyze the computability of this quantity, and we describe a series of approximations that converge to the p-radius with a priori computable accuracy. For nonnegative matrices, this gives efficient approximation schemes for the p-radius computation. We finally show the efficiency of our methods on several practical examples.

Raphael Jungers hasn't uploaded this paper.

Let Raphael know you want this paper to be uploaded.

Ask for this paper to be uploaded.