Reachability of consensus and synchronizing automata (original) (raw)

Abstract

We consider the problem of determining the existence of a sequence of matrices driving a discrete-time multi-agent consensus system to consensus. We transform this problem into the problem of the existence of a product of the (stochastic) transition matrices that has a positive column. This allows us to make use of results from automata theory to sets of stochastic matrices. Our main result is a polynomial-time algorithm to decide the existence of a sequence of matrices achieving consensus.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (22)

  1. R. L. Adler and B. Weiss. Similarity of automorphisms of the torus. Memoirs of the American Mathematical Society, 98, 1970.
  2. F. Bénézit, V. D. Blondel, P. Thiran, J. N. Tsitsiklis, and M. Vetterli. Weighted gossip: Distributed averaging using non-doubly stochastic matrices. In IEEE International Symposium on Information Theory Proceedings, pages 1752-1757, 2010.
  3. M. V. Berlinkov. Approximating the minimum length of synchronizing words is hard. Lecture Notes in Computer Science, 6072:37-47, 2010.
  4. V. D. Blondel, R. M. Jungers, and A. Olshevsky. On primitivity of sets of matrices. Submitted, 2014.
  5. J. Černý. Poznámka k homogénnym eksperimentom s konečnými automatami. Matematicko-fysikalny Casopis SAV, 14:208-216, 1964.
  6. A. Chapman and M. Mesbahi. On symmetry and controllability of multi-agent systems. In Proceedings of the 53 th IEEE Conference on Decision and Control, 2014.
  7. P.-Y. Chevalier, J. M. Hendrickx, and R. M. Jungers. Efficient algorithms for the consensus decision problem. To appear in SIAM Journal on Control and Optimization, 2014.
  8. Franc ¸ois Gonze and R. M. Jungers. On the synchronizing probability function and the triple rendezvous time for synchronizing automata. Submitted, 2015.
  9. D. Eppstein. Reset sequences for monotonic automata. SIAM Journal on Computing, 19(3):500-510, 1990.
  10. F. M. Fominykh, P. V. Martyugin, and M. V. Volkov. P(l)aying for synchronization. International Journal of Foundations of Computer Science, 24(6):765-780, 2013.
  11. P. Frankl. An extremal problem fro two families of sets. European Journal of Combinatorics, 3:125-127, 1982.
  12. J.C. Geromel and P. Colaneri. Stability and stabilization of discrete time switched systems. International Journal of Control, 79(07):719- 728, 2006.
  13. R. M. Jungers. The joint spectral radius, theory and applications. In Lecture Notes in Control and Information Sciences, volume 385. Springer-Verlag, Berlin, 2009.
  14. R. M. Jungers. The synchronizing probability function of an automa- ton. SIAM Journal on Discrete Mathematics, 26(1):177-192, 2012.
  15. D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computation of aggregate information. In Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science, pages 482-491, 2003.
  16. E. F. Moore. Gedanken-experiments on sequential machines. Annals of mathematics studies, 34:129-153, 1956.
  17. M. S. Paterson. Unsolvability in 3 × 3 matrices. Studies in Applied Mathematics, 49:105-107, 1970.
  18. J.-É. Pin. On two combinatorial problems arising from automata theory. Annals of Discrete Mathematics, 17:535-548, 1983.
  19. A. Rahmani, M. Ji, M. Mesbahi, and M. Egerstedt. Controllability of multi-agent systems from a graph-theoretic perspective. International Journal of Control, 48(1):162-186, 2009.
  20. D. Stanford and J. M. Urbano. Some convergence properties of matrix sets. SIAM Journal on Matrix Analysis and Applications, 15(4):1332- 1340, 1994.
  21. A. N. Trahtman. The road coloring problem. Israel Journal of Mathematics, 172(2):51-60, 2009.
  22. M. V. Volkov. Synchronizing automata and the Černý conjecture. In LATA'08: Proceedings of the 2nd International Conference on Language and Automata Theory and Applications, pages 11-27.