Impaired nucleotide excision repair pathway as a possible factor in pathogenesis of head and neck cancer (original) (raw)
Related papers
DNA Damage and Repair of Head and Neck Cancer Cells after Radio- and Chemotherapy
Zeitschrift für Naturforschung C, 2009
DNA repair is critical for successful chemo- and radiotherapy of human tumours, because their genotoxic sensitivity may vary in different types of cancer cells. In this study we have compared DNA damage and the efficiency of its repair after genotoxic treatment with hydrogen peroxide, cisplatin and γ-radiation of head and neck squamous cell carcinoma (HNSCC). Lymphocytes and tissue cells from biopsies of 37 cancer patients and 35 healthy donors as well as the HTB-43 larynx cancer cell line were employed. The cell sensitivity to genotoxic treatment was estimated by the MTT survival assay. The extent of DNA damage and efficiency of its repair was examined by the alkaline comet assay. Among the examined treatments, we found that HNSCC cells were the most sensitive to γ-radiation and displayed impaired DNA repair. In particular, DNA damage was repaired less effectively in cells from HNSCC metastasis than healthy controls. In conclusion, our results suggest that the different genotoxic s...
Experimental oncology, 2009
To evaluate the generation and repair of DNA double strand breaks (DSBs) as a critical factors that define the efficiency of radiation therapy of cancer patients. Peripheral blood lymphocytes obtained from 18 patients with head and neck squamous cell carcinoma (HNSCC) and 18 healthy donors were studied. The efficiency of DSBs repair after genotoxic treatment with hydrogen peroxide and gamma-radiation were examined by neutral comet assay. MTT assay was used for cell viability analysis and Annexin V-FITC kit specific for kinase-3 was employed to determine apoptosis. Lymphocytes from HNSCC patients were sensitive to genotoxic treatment and displayed impaired DSBs repair. Finally, as a consequence of this finding we have evidenced higher rate of apoptosis induction after gamma-radiation treatment of lymphocytes from HNSCC patients than those from healthy controls. DSBs repair and increased apoptosis in cells of patients with head and neck cancer is relevant for efficient therapy of HNSCC.
International Journal of Molecular Sciences
Head and neck cancer (HNC) is a term collectively used to describe a heterogeneous group of tumors that arise in the oral cavity, larynx, nasopharynx, oropharynx, and hypopharynx, and represents the sixth most common type of malignancy worldwide. Despite advances in multimodality treatment, the disease has a recurrence rate of around 50%, and the prognosis of metastatic patients remains poor. HNCs are characterized by a high degree of genomic instability, which involves a vicious circle of accumulating DNA damage, defective DNA damage repair (DDR), and replication stress. Nonetheless, the damage that is induced on tumor cells by chemo and radiotherapy relies on defective DDR processes for a successful response to treatment, and may play an important role in the development of novel and more effective therapies. This review summarizes the current knowledge on the genes and proteins that appear to be deregulated in DDR pathways, their implication in HNC pathogenesis, and the rationale...
Sequential evaluation of DNA damage in patients with head and neck carcinoma receiving radiotherapy
Asian Journal of Medical Sciences, 2022
Background: Head and neck cancers account for about 30% of all cancers in India. Studies showed that there is an increased primary DNA damage even before the commencement of any modality of treatment in cancer patients which is further increased by the treatment. Chemo-radiation induced DNA damage is not repaired so effectively in patients with carcinoma which might pave way for secondary carcinoma. Aims and Objectives: The aim of this study was to assess the degree of DNA damage by comet assay technique in patients with head and neck carcinoma receiving radiotherapy. The degree of DNA damage was compared according to the age, gender, and associated risk factors of the patients. Materials and Methods: 35 patients with Stages II, III, and IVA, histopathologically confirmed Squamous cell carcinoma of head and neck with Karnofsky Performance Status >70 attending radiotherapy OPD for treatment were included in this study.1 ml of heparinized blood was collected from the study participants during various doses of radiation treatment. All the samples were processed immediately and analyzed for DNA damage by single cell gel electrophoresis assay-Comet assay technique. Results: The comet length parameter, head diameter, and tail length were found to be increased when compared to baseline sample. The percentage of DNA in head parameter of post-RT sample was decreased when compared to baseline sample All these findings are indicative of DNA damage following radiotherapy. Conclusion: Patients with locally advanced head and neck carcinoma following radiotherapy showed a sequential increase in the DNA damage. The co-existing risk factors and old age may increase the baseline DNA damage in the patients with head and neck cancers.
Evaluation of DNA Double Strand Breaks Repair Efficiency in Head and Neck Cancer
DNA and Cell Biology, 2012
Head and neck cancers (head and neck squamous cell carcinomas [HNSCC]) are a heterogeneous group of neoplasms with varying presenting symptoms, treatment, and expected outcome. There is a need to find an effective way of its treatment at the molecular level. Thus, we should identify the mechanism of cancer cell response to damaging agents' activity, especially at DNA level. Our major goal was to evaluate the efficacy of DNA double strand breaks (DSBs) repair in HTB-43 and SCC-25 cancer cell lines as well as lymphocytes taken from HNSCC patients and healthy donors. The DNA repair efficiency was measured by neutral comet assay as well as extrachromosomal assay for DNA DSBs repair (TAK assay). We determined the levels of two main pathways of DNA DSBs-nonhomologous end joining (NHEJ) and homologous recombination repair (HRR). Neutral comet assay was used for evaluation of DNA DSBs repair after treatment with genotoxic agents. DNA DSBs induced by gamma radiation were repaired slower in lymphocytes from HNSCC patients than in lymphocytes from healthy controls. HTB-43 and SCC-25 cancer cell lines have higher efficacy of NHEJ and HRR than lymphocytes taken from patients as well as control subjects. Our results confirm the necessity of further studies on the mechanisms of DNA DSBs repair to provide insight into the molecular basis of head and neck cancer, which will allow us to improve methods of HNSCC treatment.
Cells, 2020
DNA damage response inhibitors (DDRi) may selectively enhance the inactivation of tumor cells in combination with ionizing radiation (IR). The induction of senescence may be the key mechanism of tumor cell inactivation in this combinatorial treatment. In the current study the effect of combined IR with DDRi on the induction of senescence was studied in head and neck squamous cell carcinoma (HNSCC) cells with different human papilloma virus (HPV) status. The integrity of homologous recombination (HR) was assessed in two HPV positive, two HPV negative HNSCC, and two healthy fibroblast cell cultures. Cells were treated with the DDRi CC-115 (DNA-dependent protein kinase, DNA-pK; dual mammalian target of rapamycin, mTor), VE-822 (ATR; ataxia telangiectasia and Rad3-related kinase), and AZD0156 (ATM; ataxia telangiectasia mutated kinase) combined with IR. Effects on senescence, apoptosis, necrosis, and cell cycle were analyzed by flow cytometry. The fibroblast cell lines generally tolerat...
International Journal of Cancer, 2008
It is possible that oxidatively damaged DNA which arises as a result of radiotherapy may be involved in the therapeutic effect of the ionizing radiation and in the side effects. Therefore, for the first time, the broad spectrum of oxidatively damaged DNA biomarkers: urinary excretion of 8-oxodG (8-oxo-7,8-dihydro-2 0deoxyguanosine), 8-oxoGua (8-oxo-7,8-dihydroguanine) as well as the level of oxidatively damaged DNA in leukocytes, was analyzed in head and neck cancer patients (n 5 27) undergoing fractionated radiotherapy using methodologies which involve HPLC (high-performance liquid chromatography) prepurification followed by gas chromatography with isotope dilution mass spectrometry detection and HPLC/EC. Of all the analyzed parameters in the majority of patients, only urinary excretion of the modified nucleoside significantly increased over the initial level in the samples collected 24 hr after the last fraction. However, for the distinct subpopulation of 10 patients, a significant increase in the level of 8-oxodG in cellular DNA and a simultaneous drop in urinary 8-oxo-Gua (the repair product of oxidative DNA damage) were detected after completion of the therapy. Because 8-oxoGua is a repair product of the DNA damage, there is a possibility that, at least in the case of some patients with the lowest activity of OGG1 (8-oxo-7,8-dihydroguanine glycosylase), the combination of lower OGG1 repair efficacy and irradiation was associated with increased background level of 8-oxoGua in cellular DNA. Apparently reduced DNA repair is unable to cope with the radiation-induced, and the extra amount of 8-oxoGua leading to an increase of potentially mutagenic/carcinogenic lesions.
Carcinogenesis, 2017
Nucleotide excision repair (NER) plays a critical role in the development of smoking-related cancers. We hypothesize that mRNA expression levels of NER genes are associated with risk of the squamous cell carcinoma of head and neck (SCCHN). To test this hypothesis, we conducted a case-control study of 260 SCCHN patients and 246 cancer-free controls by measuring the mRNA expression levels of eight core NER genes in cultured peripheral lymphocytes. Compared with the controls, cases had statistically significantly lower expression levels of DDB1 and ERCC3 (P = 0.015 and 0.041, respectively). Because DDB1 and ERCC3 expression levels were highly correlated, we used DDB1 for further multivariate analyses and modeling. After dividing the subjects by controls' quartiles of expression levels, we found an association between an increased risk of SCCHN and low DDB1 expression levels [adjusted ORs and 95% CIs: 1.92 and 1.11-3.32, 1.48 and 0.85-2.59, 2.00 and 1.15-3.45 for the 2nd - 4th quart...
Genetic effects of X-ray and carbon ion irradiation in head and neck carcinoma cell lines
The Bulletin of Tokyo Dental College, 2007
The effects of X-ray and carbon ion irradiation on DNA and genes in head and neck carcinoma cells were examined. Four head and neck cancer cell lines (squamous cell carcinoma, salivary gland cancer, malignant melanoma, normal keratinocyte) were treated with 1, 4, and 7 GyE of carbon ion, or 1, 4, and 8 Gy of X-ray, respectively. DNA and RNA in the treated cells were extracted and purified. PCR-LOH (polymerase chain reaction-loss of heterozygosity) analysis with 6 microsatellite regions on chromosome 17 was performed to determine DNA structural damage, and then microarray analysis was performed to reveal changes in gene expression. PCR-LOH analysis detected high LOH in cells treated by radiation, indicating that most of the damage by X-ray occurred in the target region on one of the homologous chromosomes. However, carbon ion caused homo-deletion, which means deletion of the counterparts in both homologous chromosomes.
Nucleotide Excision Repair Is Reduced in Oral Epithelial Tissues Compared with Skin
Ultraviolet radiation (UVR) exposure to internal tissues for diagnostic, therapeutic and cosmetic procedures has increased dramatically over the past decade. The greatest increase in UVR exposure of internal tissues occurs in the cosmetic industry where it is combined with oxidizing agents for teeth whitening, often in conjunction with indoor tanning. To address potential carcinogenic risks of these procedures, we analyzed the formation and repair of the DNA photoproducts associated with the signature mutations of UVR. Radioimmunoassay was used to quantify the induction and repair of cyclobutane pyrimidine dimers and pyrimidine(6-4)pyrimidone photoproducts in DNA purified from three reconstructed tissues, EpiDerm TM , EpiGin-gival TM and EpiOral TM. We observed comparable levels of DNA damage in all tissues immediately after UVR exposure. In contrast, repair was significantly reduced in both oral tissues compared with EpiDerm TM. Our data suggest that UVR exposure of oral tissues can result in accumulation of DNA damage and increase the risk for carcinoma and melanoma of the mouth. Because NER is a broad-spectrum defense against DNA damage caused by a variety of agents in addition to UVR, our data suggest that the relatively low NER efficiency observed in oral tissues may have wide-ranging consequences in this highly exposed environment.