Evolution and Diversity of Bark and Ambrosia Beetles (original) (raw)

The evolution of mating systems in bark and ambrosia beetles (Coleoptera: Scolytidae and Platypodidae)

Zoological Journal of The Linnean Society, 1983

The extraordinary array of mating systems in the Scolytidae and Platypodidae has been largely overlooked by researchers interested in the evolution of sexual behaviour. This paper provides the first overview of reproductive behaviour in this important and widespread group, known to most biologists only by the reputations of tree-killing taxa.Referred to generally as ‘bark beetles’, these insects chew egg tunnels inside a variety of (usually dead) plant tissues, though most species are either phloeophagous (breeding in the inner bark of woody plants) or xylomycetophagous (all stages feeding on mutualistic fungi growing on sapwood or heartwood). In most species, permanent records of many aspects of reproductive behaviour are etched in the host; in many, engravings reveal female fecundity, eggs sired per male, hatching success, and offspring survivorship. Each gallery arm represents a good portion of a given female's lifetime reproduction, but in many species females commonly re-emerge to reproduce in one or two additional sites.In most species of bark beetles, each female initiates her own gallery, to be joined later by a male. These monogynous gallery systems are associated with mating systems defined by how long males stay with females: in a few species, males seldom if ever join females under the bark; in the vast majority of species, males stay for part or all of the oviposition period then leave to seek other mates; and a few groups exhibit permanent monogamy, in that both sexes die in their only gallery system. While these patterns emerge from an overview of the world scolytid fauna, the length of male residency has seldom been quantified, and the costs and benefits associated with male mating strategies have not been measured for any bark beetle.Male-initiated monogyny is uncommon in Scolytidae, though the rule in Platypodidae; all instances of which I am aware are summarized from a phylogenetic perspective.Inbreeding polygyny with highly biased sex ratios has arisen at least seven times in Scolytidae. These taxa are usually characterized by males being dwarfed, flightless, and uncommon. Sex determination is known for only a few examples, but both haplodiploidy and diplodiploidy have been reported.Multiple origins of harem polygyny (otherwise rare in invertebrates) add an exciting dimension to the comparative and experimental study of scolytid mating systems. In harem polygynous taxa, males initiate gallery construction. I summarize what little can be learned from the literature about the fine structure of harem polygynous mating systems in bark beetles, and the problem of measuring reproductive success. Data on the nature of harem polygyny in Pityophthorus lautus are presented, illustrating (a) the fluidity of harems; (b) that average eggs laid per gallery arm is relatively unaffected by harem size, but strongly influenced by resource quality; (c) that male egg-gain is strongly correlated with territory quality (a consequence of (b) above); and (d) the temporal patterning of immigration and emigration and its effects on gallery system sex ratios.The second half of this paper is a discussion of the evolution of bark and ambrosia beetle mating Mating systems, emphasizing sexual selection and the role of resources. Male, residence is interpreted as postcopulalory guarding—preventing sexual liaisons with wandering males. Operational sex ratio, encounter rate, synchrony of breeding, ejaculate competition, and spatiotemporal distribution of resources are discussed as evolutionary forces moulding scolytid and platypodid male postmating behaviour. The nature of male male competition is reviewed. The paucity of information on male behaviour in gallery systems is mentioned; whether or not males significantly aid females is not known. Three hypotheses are presented for why females re-emerge, a feature which strongly affects operational sex ratios. Finally, I summarize features of bark beetle existence predisposing them to the evolution of post-inseminative guarding.Male-initiated monogyny presents a puzzle. I propose that most uncontested examples can be explained by monogyny re-evolving from (male-initiated) harem polygyny, and I present an argument for the evolution of harem polygyny leading to the development of male gallery initiation.The evolution of harem polygyny in birds and mammals has attracted considerable attention. The Verner Willson Orians polygyny threshold model is discussed with respect to bark beetles in general and P. lautus in particular. Resource quality is a major factor in P. lautus harem dynamics: the cost to females of joining harems is apparently slight compared to benefits accrued from moving into sites with higher quality inner bark.Female-biased adult sex ratios have been suggested to lead to harem polygyny, and literature and original data pertinent to this hypothesis are examined.The geometric constraints model, based on the polygyny threshold concept but tailored to bark beetles, is proposed to account for the failure of most species to evolve harem polygyny, and testable predictions are derived that interrelate breeding systems, habitat quality, and progeny size.The evolution of Inbreeding is briefly covered, and two routes to inbreeding polygyny are suggested.

The evolution of agriculture in beetles (Curculionidae: Scolytinae and Platypodinae)

2001

Beetles in the weevil subfamilies Scolytinae and Platypodinae are unusual in that they burrow as adults inside trees for feeding and oviposition. Some of these beetles are known as ambrosia beetles for their obligate mutualisms with asexual fungi-known as ambrosia fungi-that are derived from plant pathogens in the ascomycete group known as the ophiostomatoid fungi. Other beetles in these subfamilies are known as bark beetles and are associated with free-living, pathogenic ophiostomatoid fungi that facilitate beetle attack of phloem of trees with resin defenses. Using DNA sequences from six genes, including both copies of the nuclear gene encoding enolase, we performed a molecular phylogenetic study of bark and ambrosia beetles across these two subfamilies to establish the rate and direction of changes in life histories and their consequences for diversification. The ambrosia beetle habits have evolved repeatedly and are unreversed. The subfamily Platypodinae is derived from within the Scolytinae, near the tribe Scolytini. Comparison of the molecular branch lengths of ambrosia beetles and ambrosia fungi reveals a strong correlation, which a fungal molecular clock suggests spans 60 to 21 million years. Bark beetles have shifted from ancestral association with conifers to angiosperms and back again several times. Each shift to angiosperms is associated with elevated diversity, whereas the reverse shifts to conifers are associated with lowered diversity. The unusual habit of adult burrowing likely facilitated the diversification of these beetle-fungus associations, enabling them to use the biomass-rich resource that trees represent and set the stage for at least one origin of eusociality.

Ambrosia beetles (Curculionidae: Scolytinae and Platypodinae) on Fagus crenata Blume: community structure, seasonal population trends and resource utilization patterns

Entomological Science, 2014

ABSTRACT Ambrosia beetles (many Scolytinae and all Platypodinae) are one of the most important insect pests for forestry worldwide, but little is known about the community structure of ambrosia beetles in terms of their vertical variations and resource utilization. We clarified the community structure and seasonal population trends of ambrosia beetles on 11 living and three newly dead Fagus crenata Blume trees using individual tube traps placed up to 10 m high from May to November in 2007 and 2008. We captured seven scolytine species (Ambrosiodmus lewisi (Blandford), Euwallacea validus (Eichhoff), Trypodendron proximum (Niisima), Xyleborinus saxeseni (Ratzeburg), Xyleborus atratus Eichhoff, Xylosandrus brevis (Eichhoff) and Xylosan-drus germanus (Blandford)) and three platypodine species (Crossotarsus niponicus Blandford, Platypus hamatus Blandford and Platypus severini Blandford). The ambrosia beetles were suggested to breed at species-specific height ranges, with the equal host resource use per individual among the species. Of the three major species, C. niponicus, P. hamatus and P. severini, two (C. niponicus and P. hamatus) had male-biased sex ratios, which is considered a reproductive strategy to increase maternal fitness. Morphological charac-teristics of the mandibles may play an important role in the difference of sex roles on reproduction in the three major species.

Delayed dispersal as a potential route to cooperative breeding in ambrosia beetles

Behavioral Ecology and Sociobiology, 2007

Xyleborini are a species-rich tribe of ambrosia beetles, which are haplodiploid and typically mate among siblings within their natal brood chamber. Several characteristics of this tribe would predict the evolution of higher levels of sociality: high genetic relatedness within galleries due to inbreeding, high costs of dispersal and the potential benefit of cooperation in brood care within the natal gallery (e.g. by fungus gardening, gallery extension, offspring feeding and cleaning). However, information on the social system of these beetles is very limited. We examined the potential for cooperative breeding in Xyleborinus saxeseni by monitoring dispersal in relation to brood size and composition. Results show that adult female offspring delay dispersal despite dispersal opportunities, and apparently some females never disperse. The females' decision to stay seems to depend on the presence of eggs and dependent siblings. We found no indication that female offspring reproduce in their natal gallery, as colonies with many mature daughters do not contain more eggs than those with few or no daughters. There is a significant positive relationship between the number of females present and the number of dependent siblings (but not eggs), which suggests that cooperative brood care of female offspring raises colony productivity by improving survival rates of immatures. Our results suggest that cooperative breeding is likely to occur in X. saxeseni and possibly other xyleborine species. We argue that a closer look at sociality within this tribe may yield important information on the factors determining the evolution of cooperative breeding and advanced social organization.

More Fun Than Fun: Beetles Lead Complex Social Lives in Dead Trees

The Wire Science, 2021

This article is part of the 'More Fun Than Fun' column by Prof Raghavendra Gadagkar. He will explore interesting research papers or books and, while placing them in context, make them accessible to a wide readership. • Among species found under tree bark, perhaps the most unique are the ambrosia beetles. • Many insects live off dead trees, but in most cases, only the larvae live in the wood; the adults fly about to feed and mate. • The uniqueness of the bark beetles is that insects in all life stages live entirely in the wood. • The ambrosia beetles, among bark beetles, are further unique: they don't feed on the wood itself but use it to cultivate fungi and eat their agricultural produce.

Separation of the sexes of living spruce bark beetles, Ips typographus (L.), (Coleoptera: Scolytidae)1

Zeitschrift für Angewandte Entomologie, 1981

The sexes of Ips typographus can be reliably separated by the greater density of bristles on pronotum of the female. This proviously underscribed difference was more reliable (4 YO overlap) for distinguishing between the sexes than the old characteristics of the males larger frontal tubercle (22 YO overlap) and longer and broader third elytral spine (44 Yo and 84 % overlap, respectively). More than 94 Yo of living, handheld beetles were possible to sex, using stereomicroscope, by bristle-density with an accuracy of 98.5 Yo.

Costs of delayed dispersal and alloparental care in the fungus-cultivating ambrosia beetle Xyleborus affinis Eichhoff (Scolytinae: Curculionidae)

Behavioral Ecology and Sociobiology, 2011

Body reserves may determine the reproductive output of animals, depending on their resource allocation strategy. In insects, an accumulation of reserves for reproduction is often obtained before dispersal by preemergence (or maturation) feeding. This has been assumed to be an important cause of delayed dispersal from the natal nest in scolytine beetles. In the cooperatively breeding ambrosia beetles, this is of special interest because in this group delayed dispersal could serve two alternative purposes: "selfish" maturation feeding or "altruistic" alloparental care. To distinguish between these two possibilities, we have experimentally studied the effect of delayed dispersal on future reproductive output in the xyleborine ambrosia beetle Xyleborus affinis. Females experimentally induced to disperse and delayed dispersing females did not differ in their body condition at dispersal and in their founding success afterwards, which indicates that females disperse independently of condition, and staying adult females are fully mature and would be able to breed.