IS THERE A HIDDEN HOLE IN TYPE Ia SUPERNOVA REMNANTS? (original) (raw)
Related papers
Astronomy & Astrophysics, 2012
Context. The identity of the progenitor systems of Type Ia supernovae (SNe Ia) is still uncertain. In the single-degenerate scenario, the interaction between the supernova blast wave and the outer layers of a main sequence companion star strips off hydrogen-rich material which is then mixed into the ejecta. Strong contamination of the supernova ejecta with stripped material could lead to a conflict with observations of SNe Ia. This constrains the single-degenerate progenitor model. Aims. In this work, our previous simulations based on simplified progenitor donor stars have been updated by adopting more realistic progenitor-system models that result from fully detailed, state-of-the-art binary evolution calculations. Methods. We use Eggleton's stellar evolution code including the optically thick accretion wind model and taking into account the possibility of the effects of accretion disk instabilities to obtain realistic models of companion stars for different progenitor systems. The impact of the supernova blast wave on these companion stars is followed in three-dimensional hydrodynamic simulations employing the smoothed particle hydrodynamics (SPH) code GADGET3. Results. For a suite of main sequence companions, we find that the mass of the material stripped from the companions range from 0.11 M ⊙ to 0.18 M ⊙ . The kick velocity delivered by the impact is between 51 km s −1 and 105 km s −1 . We find that the stripped mass and kick velocity depend on the ratio of the orbital separation to the radius of a companion, a f /R. They can be fitted in good approximation by a power law for a given companion model. However, we do not find a single power law relation holding for different companion models. This implies that the structure of the companion star is also important for the amount of stripped material. Conclusions. With more realistic companion star models than those employed in previous studies, our simulations show that the hydrogen masses stripped from companions are inconsistent with the best observational limits ( 0.01M ⊙ ) derived from SN Ia nebular spectra. However, a rigorous forward modeling from the results of impact simulations with radiation transfer is required to reliably predict observable signatures of the stripped hydrogen and to conclusively assess the viability of the considered SN Ia progenitor scenario.
Dynamics and radiation of young type-Ia supernova remnants: Important physical processes
Astronomy Letters, 2004
We examine and analyze the physical processes that should be taken into account when modeling young type-Ia supernova remnants (SNRs) with ages of several hundred years, in which there are forward (propagating into an interstellar medium) and reverse (propagating into ejecta) shock waves. It is shown, that the energy losses in the metalrich ejecta can be essential for remnants already at this stage of evolution. The influence of electron thermal conduction and the rate of the energy exchange between electrons and ions on the temperature distribution and the X-radiation from such remnants is studied. The data for Tycho SNR from the XMM-Newton space X-ray telescope have been employed for the comparison of calculations with observations. ⋆ sorokina@sai.msu.su Numerical simulations of supernova remnants (SNRs) have been conducted already long ago. However, since the physics of these objects is very complex, it has not yet been completely included in any computer program in the world. Moreover, different physical processes can be essential at different stages of evolution.
Thermonuclear supernova models, and observations of Type Ia supernovae
Arxiv preprint astro-ph/0412155, 2004
In this paper, we review the present state of theoretical models of thermonuclear supernovae, and compare their predicitions with the constraints derived from observations of Type Ia supernovae. The diversity of explosion mechanisms usually found in one-dimensional simulations is a direct consequence of the impossibility to resolve the flame structure under the assumption of spherical symmetry. Spherically symmetric models have been successful in explaining many of the observational features of Type Ia supernovae, but they rely on two kinds of empirical models: one that describes the behaviour of the flame on the scales unresolved by the code, and another that takes account of the evolution of the flame shape. In contrast, three-dimensional simulations are able to compute the flame shape in a self-consistent way, but they still need a model for the propagation of the flame in the scales unresolved by the code. Furthermore, in three dimensions the number of degrees of freedom of the initial configuration of the white dwarf at runaway is much larger than in one dimension. Recent simulations have shown that the sensitivity of the explosion output to the initial conditions can be extremely large. New paradigms of thermonuclear supernovae have emerged from this situacion, as the Pulsating Reverse Detonation. The resolution of all these issues must rely on the predictions of observational properties of the models, and their comparison with current Type Ia supernova data, including X-ray spectra of Type Ia supernova remnants.
2016
We investigate the role played by initial clumping of ejecta and by efficient acceleration of cosmic rays (CRs) in determining the density structure of the post-shock region of a Type Ia supernova remnant (SNR) through detailed 3D MHD modeling. Our model describes the expansion of a SNR through a magnetized interstellar medium (ISM), including the initial clumping of ejecta and the effects on shock dynamics due to back-reaction of accelerated CRs. The model predictions are compared to the observations of SN 1006. We found that the back-reaction of accelerated CRs alone cannot reproduce the observed separation between the forward shock (FS) and the contact discontinuity (CD) unless the energy losses through CR acceleration and escape are very large and independent of the obliquity angle. On the contrary, the clumping of ejecta can naturally reproduce the observed small separation and the occurrence of protrusions observed in SN 1006, even without the need of accelerated CRs. We conclude that FS-CD separation is a probe of the ejecta structure at the time of explosion rather than a probe of the efficiency of CR acceleration in young SNRs.
Monthly Notices of the Royal Astronomical Society, 2016
Spectrophotometry of SN 1996al carried out throughout 15 yr is presented. The early photometry suggests that SN 1996al is a linear Type II supernova, with an absolute peak of M V ∼ −18.2 mag. Early spectra present broad asymmetric Balmer emissions, with superimposed narrow lines with P-Cygni profile, and He I features with asymmetric broad emission components. The analysis of the line profiles shows that the H and He broad components form in the same region of the ejecta. By day +142, the Hα profile dramatically changes: the narrow P-Cygni profile disappears, and the Hα is fitted by three emission components that will be detected over the remaining 15 yr of the supernova (SN) monitoring campaign. Instead, the He I emissions become progressively narrower and symmetric. A sudden increase in flux of all He I lines is observed between 300 and 600 d. Models show that the SN luminosity is sustained by the interaction of low-mass (∼1.15 M) ejecta, expelled in a low kinetic energy (∼1.6 × 10 50 erg) explosion, with highly asymmetric circumstellar medium. The detection of Hα emission in pre-explosion archive images suggests that the progenitor was most likely a massive star (∼25 M ZAMS) that had lost a large fraction of its hydrogen envelope before explosion, and was hence embedded in a H-rich cocoon. The low-mass ejecta and modest kinetic energy of the explosion are explained with massive fallback of material into the compact remnant, a 7-8-M black hole.
The Astrophysical Journal, 2007
The explosion of a carbon-oxygen white dwarf as a Type Ia supernova is known to be sensitive to the manner in which the burning is ignited. Studies of the pre-supernova evolution suggest asymmetric, off-center ignition, and here we explore its consequences in two-and three-dimensional simulations. Compared with centrally ignited models, one-sided ignitions initially burn less and release less energy. For the distributions of ignition points studied, ignition within two hemispheres typically leads to the unbinding of the white dwarf, while ignition within a small fraction of one hemisphere does not. We also examine the spreading of the blast over the surface of the white dwarf that occurs as the first plumes of burning erupt from the star. In particular, our studies test whether the collision of strong compressional waves can trigger a detonation on the far side of the star as has been suggested by Plewa et al. (2004). The maximum temperature reached in these collisions is sensitive to how much burning and expansion has already gone on, and to the dimensionality of the calculation. Though detonations are sometimes observed in 2D models, none ever happens in the corresponding 3D calculations. Collisions between the expansion fronts of multiple bubbles also seem, in the usual case, unable to ignite a detonation. "Gravitationally confined detonation" is therefore not a robust mechanism for the explosion. Detonation may still be possible in these models however, either following a pulsation or by spontaneous detonation if the turbulent energy is high enough.
Type Ia Supernovae and Their Environment: Theory & Applications to SN 2014J
2021
We present theoretical semi-analytic models for the interaction of stellar winds with the interstellar medium (ISM) or prior mass loss implemented in our code SPICE , assuming spherical symmetry and power-law ambient density profiles and using the Π-theorem. This allows us to test a wide variety of configurations, their functional dependencies, and to find classes of solutions for given observations. Here, we study Type Ia Supernova (SN Ia) surroundings of single and double degenerate systems, and their observational signatures. Winds may originate from the progenitor prior to the white dwarf (WD) stage, the WD, a donor star, or an accretion disk (AD). For MCh explosions, the AD wind dominates and produces a low-density void several light years across surrounded by a dense shell. The bubble explains the lack of observed interaction in late time SN light curves for, at least, several years. The shell produces narrow ISM lines Doppler shifted by 10-100 km/s, and equivalent widths of ≈...
Hydrodynamic simulations unravel the progenitor-supernova-remnant connection in SN 1987A
Astronomy & Astrophysics, 2020
Context.Massive stars end their lives in catastrophic supernova (SN) explosions. Key information on the explosion processes and on the progenitor stars can be extracted from observations of supernova remnants (SNRs), which are the outcome of SNe. Deciphering these observations, however, is challenging because of the complex morphology of SNRs.Aims.We aim to link the dynamical and radiative properties of the remnant of SN 1987A to the geometrical and physical characteristics of the parent aspherical SN explosion and to the internal structure of its progenitor star.Methods.We performed comprehensive three-dimensional hydrodynamic simulations which describe the long-term evolution of SN 1987A from the onset of the SN to the full-fledged remnant at the age of 50 years, accounting for the pre-SN structure of the progenitor star. The simulations include all physical processes relevant for the complex phases of SN evolution and for the interaction of the SNR with the highly inhomogeneous a...