Chromate Reduction in Highly Alkaline Groundwater by Zero Valent Iron: Implications for its use in a permeable reactive barrier (original) (raw)

The application of in situ permeable reactive (zero-valent iron) barrier technology for the remediation of chromate-contaminated groundwater: a field test

Applied Geochemistry, 1999

A small-scale field test was initiated in September 1994 to evaluate the in situ remediation of groundwater contaminated with chromate using a permeable reactive barrier composed of a mixture of zero-valent Fe, sand and aquifer sediment. The site used was an old chrome-plating facility located on a U.S. Coast Guard air base near Elizabeth City, North Carolina. Dissolved chromate concentrations were reduced to less than 0.01 mg/L via reduction from Cr(VI) to Cr(III) as a result of the corrosion of the Fe. As the Fe corrodes, pH increases, oxidation-reduction potential declines, dissolved oxygen is consumed, and Fe(II) is generated. Mineral phases formed as a result of the Fe corrosion include ferrous sulfides and various Fe oxides, hydroxides, and oxyhydroxides.

Hardness and carbonate effects on the reactivity of zero-valent iron for Cr(VI) removal

Water Research, 2006

Zero-valent iron (Fe0) was used to remove hexavalent chromium, Cr(VI), in groundwater via a coupled reduction-oxidation reaction. Nine columns were set up under various groundwater geochemistry to investigate the effects of hardness and carbonate on Cr(VI) removal. The Cr(VI) removal capacity of Fe0 was found to be about 4 mg Cr/g Fe0 in the control column (i.e., column 1). A slight decrease in the Cr(VI) removal capacity was found in the presence of calcium hardness. However, there was a 17% drop in the Cr(VI) removal capacity when magnesium hardness was present at low to moderately hard level. Results also revealed that carbonate changed the morphology of the Fe0 by formation of pale green precipitates on the iron filings. Furthermore, there was a 33% decrease in the Cr(VI) removal capacity of Fe0 when both carbonate and hardness ions were present. In general, the presence of hardness ions and carbonate in groundwater have great impact on the Fe0 by formation of passivated precipitates, such as CaCO3, on the Fe0 surface resulting in a diminished lifespan of the Fe0 by blocking electron transfer.

Chromium Removal in the Presence of NOM during Fe(II) Reductive Precipitation for Drinking Water Treatment

Water

Cr(VI) is toxic and carcinogenic, which fuels discussions on reducing existing standards for maximum Cr concentrations in drinking water. Fe(II) reductive precipitation is a common and economical method for achieving very low Cr(tot) concentrations (<5 µg/L). While Cr(VI) is reduced to Cr(III), Fe(II) is oxidized to Fe(III). The resulting Cr(III) and Fe(III) have low solubilities at neutral pH, precipitate as hydroxides, and can be removed by conventional media filtration. The presence of natural organic matter (NOM) in the raw water source can, depending on pH, concentration, type of NOM, and contact time, affect this process in various ways, from promoting Cr(VI) reduction, to re-reducing Fe(III), to forming stable complexes with Cr and Fe, thus, impairing chromium removal. The presented data showed that NOM, whether dominated by terrestrial humic acid, or of aquatic origin, could substantially impair chromium removal at neutral pH conditions. In particular, the ultimate remova...