Protein supplementation does not alter intramuscular anabolic signaling or endocrine response following resistance exercise in trained men (original) (raw)
Related papers
Physiological reports, 2015
Resistance exercise paradigms are often divided into high volume (HV) or high intensity (HI) protocols, however, it is unknown whether these protocols differentially stimulate mTORC1 signaling. The purpose of this study was to examine mTORC1 signaling in conjunction with circulating hormone concentrations following a typical HV and HI lower-body resistance exercise protocol. Ten resistance-trained men (24.7 ± 3.4 years; 90.1 ± 11.3 kg; 176.0 ± 4.9 cm) performed each resistance exercise protocol in a random, counterbalanced order. Blood samples were obtained at baseline (BL), immediately (IP), 30 min (30P), 1 h (1H), 2 h (2H), and 5 h (5H) postexercise. Fine needle muscle biopsies were completed at BL, 1H, and 5H. Electromyography of the vastus lateralis was also recorded during each protocol. HV and HI produced a similar magnitude of muscle activation across sets. Myoglobin and lactate dehydrogenase concentrations were significantly greater following HI compared to HV (P = 0.01-0.02...
Nutrition Research, 2014
The effects of a single bout of resistance exercise (RE) in conjunction with peri-exercise branched chain amino acid (BCAA) and carbohydrate (CHO) ingestion on skeletal muscle signaling markers indicative of muscle protein synthesis (MPS) were determined. It was hypothesized that CHO + BCAA would elicit a more profound effect on these signaling markers compared to CHO. Twenty-seven males were randomly assigned to CHO, CHO + BCAA, or placebo (PLC) groups. Four sets of leg presses and leg extensions were performed at 80% 1RM. Supplements were ingested 30 min and immediately prior to and after RE. Venous blood and muscle biopsy samples were obtained immediately prior to supplement ingestion and 0.5 hr, 2 hr, and 6 hr after RE. Serum insulin and glucose and phosphorylated levels of muscle insulin receptor substrate 1 (IRS1), protein kinase B (Akt), mammalian target of rapamycin (mTOR), p70S6 kinase (p70S6K), and 4E binding protein 1 (4E-BP1) were assessed. Data were analyzed by two-way repeated measures ANOVA. Significant group x time interactions were observed for glucose and insulin (p < 0.05) showing that CHO and CHO + BCAA were significantly greater than PLC. Significant time main effects were observed for IRS1 (p = 0.001), Akt (p = 0.031), mTOR (p = 0.003), and p70S6K (p = 0.001). CHO and CHO + BCAA supplementation significantly increased IRS-1 compared to PLC (p = 0.002). However, peri-exercise co-ingestion of CHO and BCAA did not augment RE-induced increases in skeletal muscle signaling markers indicative of MPS when compared to CHO.
2014
The effects of a single bout of resistance exercise (RE) in conjunction with peri-exercise branched chain amino acid (BCAA) and carbohydrate (CHO) ingestion on skeletal muscle signaling markers indicative of muscle protein synthesis (MPS) were determined. It was hypothesized that CHO + BCAA would elicit a more profound effect on these signaling markers compared to CHO. Twenty-seven males were randomly assigned to CHO, CHO + BCAA, or placebo (PLC) groups. Four sets of leg presses and leg extensions were performed at 80% 1RM. Supplements were ingested 30 min and immediately prior to and after RE. Venous blood and muscle biopsy samples were obtained immediately prior to supplement ingestion and 0.5 hr, 2 hr, and 6 hr after RE. Serum insulin and glucose and phosphorylated levels of muscle insulin receptor substrate 1 (IRS1), protein kinase B (Akt), mammalian target of rapamycin (mTOR), p70S6 kinase (p70S6K), and 4E binding protein 1 (4E-BP1) were assessed. Data were analyzed by two-way repeated measures ANOVA. Significant group x time interactions were observed for glucose and insulin (p < 0.05) showing that CHO and CHO + BCAA were significantly greater than PLC. Significant time main effects were observed for IRS1 (p = 0.001), Akt (p = 0.031), mTOR (p = 0.003), and p70S6K (p = 0.001). CHO and CHO + BCAA supplementation significantly increased IRS-1 compared to PLC (p = 0.002). However, peri-exercise co-ingestion of CHO and BCAA did not augment RE-induced increases in skeletal muscle signaling markers indicative of MPS when compared to CHO.
Resistance exercise with whey protein ingestion affects mTOR signaling pathway and myostatin in men
Journal of Applied Physiology, 2009
Hulmi JJ, Tannerstedt J, Selä nne H, Kainulainen H, Kovanen V, Mero AA. Resistance exercise with whey protein ingestion affects mTOR signaling pathway and myostatin in men. Signaling pathways sense local and systemic signals and regulate muscle hypertrophy. The effects of whey protein ingestion on acute and long-term signaling responses of resistance exercise are not well known. Previously untrained young men were randomized into protein (n ϭ 9), placebo (n ϭ 9), and control (n ϭ 11) groups. Vastus lateralis (VL) muscle biopsies were taken before and 1 h and 48 h after a leg press of 5 ϫ 10 repetitions [resistance exercise (RE)] and after 21 wk (2 times per week) of resistance training (RT). Protein (15 g of whey) or nonenergetic placebo was ingested before and after a single RE bout and each RE workout throughout the RT. The protein group increased its body mass and VL muscle thickness (measured by ultrasonography) already at week 10.5 (P Ͻ 0.05). At week 21, the protein and placebo groups had similarly increased their myofiber size. No changes were observed in the nonexercised controls. However, the phosphorylation of p70 S6K and ribosomal protein S6 (rpS6) were increased at 1 h post-RE measured by Western blotting, the former being the greatest with protein ingestion. Mammalian target of rapamycin (mTOR) phosphorylation was increased after the RE bout and RT only in the protein group, whereas the protein ingestion prevented the post-RE decrease in phosphorylated eukaryotic initiation factor 4E binding protein 1 (p-4E-BP1). Akt phosphorylation decreased after RT, whereas no change was observed in phosphorylated eukaryotic elongation factor 2. A post-RE decrease in muscle myostatin protein occurred only in the placebo group. The results indicate that resistance exercise rapidly increases mTOR signaling and may decrease myostatin protein expression in muscle and that whey protein increases and prolongs the mTOR signaling response. hypertrophy; training; nutrition; S6K1; skeletal muscle ADEQUATE MUSCLE MASS is crucial for human well-being. It is, therefore, important to identify the mechanisms that stimulate muscle hypertrophy or prevent atrophy. The most efficient way to increase the size of a skeletal muscle is by resistance training (RT) in combination with protein-containing nutrition. Muscle hypertrophy due to RT and protein nutrition seems largely to result from cumulative acute increases in muscle protein syn-Address for reprint requests and other correspondence: J. Hulmi,
Biology of Sport, 2018
The aim of this study was to determine the effect of carbohydrate-protein supplementation with whey protein (CHO-PROw) after resistance training, and casein protein (PROc) before bedtime on the concentration of growth hormone (GH), insulin (I) and insulin-like growth factor (IGF-1), as well as serum creatine kinase (CK) activity. Twelve strength trained male subjects (age: 25.8 ± 4.7 years; training experience 6.1 ± 0.79 years; body mass 75.9 ± 2.7 kg; body height 171.8 ± 13.3 cm) were recruited for the study. They were randomly divided into an experimental group (group E, n = 6) and a control group (group C, n = 6). All study participants completed full barbell squats with a constant external load of 90% one-repetition maximum (1RM) and a volume of 12 sets. In each set three repetitions were performed with 3 min rest periods after each set. Immediately after the exercise protocol, the subjects from the experimental group received a carbohydrate-protein complex (CHO-PROw) with a dose of 0.5 g/kg of body mass, while before bedtime they ingested a protein supplement (PROc) consisting of 90% casein protein with a dose of 0.3 g/kg of body weight The results indicate that a ignificant increase in GH concentration occurred in the experimental group between the pre-exercise level and after 24 h of recovery (p<0.01), as well as between 1 h and 24 hours of recovery (p<0.01). Significantly higher levels of GH were also found between the control group and the experimental group 24 hours after exercise (p<0.01). The results showed significantly higher levels of IGF-1 in the experimental than in the control group after 24 hours of recovery (p<0.05). In the case of insulin, no significant differences were observed when comparing levels before exercise, after exercise, after 1 hour of recovery and after 24 hours of recovery. The CHO-PROw and the PROc supplements did not reduce post-exercise muscle membrane damage as evidenced by serum CK activity. The intake of these supplements after high-intensity resistance exercise caused an increase in GH and IGF-1 concentration, which could stimulate muscle hypertrophy and inhibit proteolysis.
Synergistic effects of resistance training and protein intake: Practical aspects
Nutrition (Burbank, Los Angeles County, Calif.), 2014
the effects of different protein sources and timing protocols on MPS. The sum of the adaptions from 43 each individual training session are essential to muscle hypertrophy, and thus highlight the 44 importance of an optimal supplementation protocol. The purpose of this review is to present recent 45 findings reported in the literature and discuss the practical application of these results. In that light, 46 new speculations and questions will arise that may direct future investigations. The information and 47 recommendations generated in this review will thereby benefit practicing sport and clinical 48 nutritionists alike. 49 50 51 52 53 54 55 56 57 M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT 3 supplementation to promote muscle protein synthesis (MPS)? Next, what is the effect of varying 79 sources of protein on muscle mass, and how does the amino acid and leucine compositions of these 80 proteins affect MPS? Finally, for healthy and elderly subjects engaged in resistance training, what 81 are the effects of pulse versus bolus supplementation schedules on MPS and glucose homeostasis? 82 100 following EAA and leucine intake in the resting state [13]. Thus, the interaction between resistance 101 training and EAA ingestion is synergistic: overload likely activates the machinery required for MPS; 102 however, increased synthesis, and therefore new muscle protein, will not begin until amino academia 103 occurs. While an acute bout of resistance training and amino acid intake is capable of inducing MPS, 104 the practical applications to these results are limited as it requires chronic overload over successive 105 sessions for MPS to manifest in measurable hypertrophy. Although chronic resistance training 106 appears to reduce the ability of overload to signal the mammalian target of rapamyacin (mTOR) [14], 128 to resistance exercise [23]. Given that a minimal of 6 weeks of training and supplementation are 129 required for measurable increases in muscle cross sectional area to occur [24], only training studies 130 that included a resistance weight-lifting protocol, were at least 6 weeks in length, and contained at 131 least two training sessions per week are included in this section of the review.
PLOS ONE, 2016
Reports concerning the effect of endurance exercise on the anabolic response to strength training have been contradictory. This study re-investigated this issue, focusing on training effects on indicators of protein synthesis and degradation. Two groups of male subjects performed 7 weeks of resistance exercise alone (R; n = 7) or in combination with preceding endurance exercise, including both continuous and interval cycling (ER; n = 9). Muscle biopsies were taken before and after the training period. Similar increases in leg-press 1 repetition maximum (30%; P<0.05) were observed in both groups, whereas maximal oxygen uptake was elevated (8%; P<0.05) only in the ER group. The ER training enlarged the areas of both type I and type II fibers, whereas the R protocol increased only the type II fibers. The mean fiber area increased by 28% (P<0.05) in the ER group, whereas no significant increase was observed in the R group. Moreover, expression of Akt and mTOR protein was enhanced in the ER group, whereas only the level of mTOR was elevated following R training. Training-induced alterations in the levels of both Akt and mTOR protein were correlated to changes in type I fiber area (r = 0.55-0.61, P<0.05), as well as mean fiber area (r = 0.55-0.61, P<0.05), reflecting the important role played by these proteins in connection with muscle hypertrophy. Both training regimes reduced the level of MAFbx protein (P<0.05) and tended to elevate that of MuRF-1. The present findings indicate that the larger hypertrophy observed in the ER group is due more to pronounced stimulation of anabolic rather than inhibition of catabolic processes.
AJP: Endocrinology and Metabolism, 2007
We recently showed that resistance exercise and ingestion of essential amino acids with carbohydrate (EAA+CHO) can independently stimulate mammalian target of rapamycin (mTOR) signaling and muscle protein synthesis in humans. Providing an EAA+CHO solution postexercise can further increase muscle protein synthesis. Therefore, we hypothesized that enhanced mTOR signaling might be responsible for the greater muscle protein synthesis when leucine-enriched EAA+CHOs are ingested during postexercise recovery. Sixteen male subjects were randomized to one of two groups (control or EAA+CHO). The EAA+CHO group ingested the nutrient solution 1 h after resistance exercise. mTOR signaling was assessed by immunoblotting from repeated muscle biopsy samples. Mixed muscle fractional synthetic rate (FSR) was measured using stable isotope techniques. Muscle protein synthesis and 4E-BP1 phosphorylation during exercise were significantly reduced ( P < 0.05). Postexercise FSR was elevated above baselin...
Journal of the International Society of Sports Nutrition, 2011
Background This study examined the effects of a whey protein supplement in conjunction with an acute bout of lower body resistance exercise, in recreationally-active males, on serum insulin and insulin like growth factor 1 (IGF-1) and Akt/mTOR signaling markers indicative of muscle protein synthesis: insulin receptor substrate 1 (IRS-1), AKT, mammalian target of rapamycin (mTOR), p70S6 kinase (p70S6K) and 4E-binding protein 1 (4E-BP1). Methods In a randomized, double-blind, cross-over design, 10 males ingested 1 week apart, either 10 g of whey protein (5.25 g EAAs) or carbohydrate (maltodextrose), 30 min prior to a lower-body resistance exercise bout. The resistance exercise bout consisted of 4 sets of 8-10 reps at 80% of the one repetition maximum (RM) on the angled leg press and knee extension exercises. Blood and muscle samples were obtained prior to, and 30 min following supplement ingestion and 15 min and 120 min post-exercise. Serum and muscle data were analyzed using two-way ...