Raf-independent Deregulation of p38 and JNK Mitogen-activated Protein Kinases Are Critical for Ras Transformation (original) (raw)

Ras, but not Src, transformation of RIE-1 epithelial cells is dependent on activation of the mitogen-activated protein kinase cascade

Oncogene, 1998

Src transformation of NIH3T3 mouse ®broblasts has been shown to be dependent on Ras function. Since we recently showed that the signaling pathways that mediate Ras transformation of RIE-1 rat intestinal epithelial cells are distinct from those that cause Ras transformation of ®broblasts, we utilized three approaches to determine if Src transformation of RIE-1 cells is dependent on Ras. First, although both Ras and Src cause upregulation of an epidermal growth factor (EGF) receptor-dependent autocrine growth loop, only Ras transformation required this activity. Second, whereas both Src and Ras caused upregulation of the p42 and p44 mitogen-activated protein kinases (MAPKs), only Ras transformation was blocked by the inhibition of MAPK activation by treatment with the PD 98059 MEK inhibitor. Third, treatment with the farnesyltransferase inhibitor FTI-277 blocked Ras, but not Src, transformation. Taken together, these observations suggest that Src transformation of RIE-1 cells is not dependent on Ras. Finally, we determined that Ras activation of Raf-independent pathways alone is sucient to cause growth transformation of RIE-1 cells. Thus, both Ras and Src cause transformation of RIE-1 cells via pathways distinct from those required to cause transformation of NIH3T3 cells.

Differential contribution of the ERK and JNK mitogen-activated protein kinase cascades to Ras transformation of HT1080 fibrosarcoma and DLD-1 colon carcinoma cells

Oncogene, 1999

Although an important contribution of ERK and JNK mitogen-activated protein kinase (MAPK) activation in Ras transformation of rodent ®broblasts has been determined, their role in mediating oncogenic Ras transformation of human tumor cells remains to be established. We have utilized the human HT1080 ®brosarcoma and DLD-1 colon carcinoma cell lines, which contain endogenous mutated and oncogenic N-and K-ras alleles, respectively, to address this role. Study of these cells is advantageous over Ras-transformed rodent model cell systems for two key reasons. First, the ras mutations occurred naturally in the progression of the tumors from which the cell lines were derived, rather than due to overexpression of an exogenously introduced gene. Second, although these tumor cells possess defects in multiple genetic loci, it has been established that mutated Ras contributes signi®cantly to the transformed phenotype of these cells. Clonal variant lines of HT1080 and DLD-1 have been isolated which have lost the oncogenic ras allele and exhibit a corresponding impairment in growth transformation in vitro and in vivo. We found that upregulation of Raf/MEK/ERK and JNK correlated with expression of oncogenic Ras in HT1080, but not DLD-1 cells. Furthermore, inhibition of ERK activation in parental HT1080 cells caused the same changes in cell morphology and actin stress ®ber organization seen with loss of expression of activated N-Ras(61K). Thus, we suggest that constitutive activation of the Raf/MEK/ERK and JNK pathways is necessary for Ras-induced transformation of HT1080 but not DLD-1 cells. These results emphasize that cell type dierences exist in the signaling pathways by which oncogenic Ras causes transformation.

Activation of Rac1, RhoA, and mitogen-activated protein kinases is required for Ras transformation

Molecular and cellular biology, 1995

Although substantial evidence supports a critical role for the activation of Raf-1 and mitogen-activated protein kinases (MAPKs) in oncogenic Ras-mediated transformation, recent evidence suggests that Ras may activate a second signaling pathway which involves the Ras-related proteins Rac1 and RhoA. Consequently, we used three complementary approaches to determine the contribution of Rac1 and RhoA function to oncogenic Ras-mediated transformation. First, whereas constitutively activated mutants of Rac1 and RhoA showed very weak transforming activity when transfected alone, their coexpression with a weakly transforming Raf-1 mutant caused a greater than 35-fold enhancement of transforming activity. Second, we observed that coexpression of dominant negative mutants of Rac1 and RhoA reduced oncogenic Ras transforming activity. Third, activated Rac1 and RhoA further enhanced oncogenic Ras-triggered morphologic transformation, as well as growth in soft agar and cell motility. Finally, we ...

Regulation of the protein kinase Raf-1 by oncogenic Ras through phosphatidylinositol 3-kinase, Cdc42/Rac and Pak

Current Biology, 2000

Activation of the protein kinase Raf-1 is a complex process involving association with the GTP-bound form of Ras (Ras-GTP), membrane translocation and both serine/threonine and tyrosine phosphorylation (reviewed in [1]). We have reported previously that p21-activated kinase 3 (Pak3) upregulates Raf-1 through direct phosphorylation on Ser338 [2]. Here, we investigated the origin of the signal for Pak-mediated Raf-1 activation by examining the role of the small GTPases Cdc42, Rac and Ras, and of phosphatidylinositol (PI) 3-kinase. Pak3 acted synergistically with either Cdc42V12 or Rac1V12 to stimulate the activities of Raf-1, Raf-CX, a membranelocalized Raf-1 mutant, and Raf-1 mutants defective in Ras binding. Raf-1 mutants defective in Ras binding were also readily activated by RasV12. This indirect activation of Raf-1 by Ras was blocked by a dominant-negative mutant of Pak, implicating an alternative Ras effector pathway in Pak-mediated Raf-1 activation. Subsequently, we show that Pak-mediated Raf-1 activation is upregulated by both RasV12C40, a selective activator of PI 3-kinase, and p110-CX, a constitutively active PI 3-kinase. In addition, p85∆ ∆, a mutant of the PI 3-kinase regulatory subunit, inhibited the stimulated activity of Raf-1. Pharmacological inhibitors of PI 3-kinase also blocked both activation and Ser338 phosphorylation of Raf-1 induced by epidermal growth factor (EGF). Thus, Raf-1 activation by Ras is achieved through a combination of both physical interaction and indirect mechanisms involving the activation of a second Ras effector, PI 3-kinase, which directs Pak-mediated regulatory phosphorylation of Raf-1.

Proteomic analysis of p38α mitogen-activated protein kinase-regulated changes in membrane fractions of RAS-transformed fibroblasts

PROTEOMICS, 2006

Oncogenic Ras signaling has been long known to play an important role in tumorigenesis and human cancer. In this report, we have used the sensitive 2-D-DIGE coupled to MS for the identification of proteins differentially expressed at the cell membrane level between oncogenic H-RasV12-transformed wild-type and p38a-deficient mouse embryo fibroblasts (MEFs). Following trifluoroethanol solubilization, 76 proteins were found to be differentially regulated. After PMF, 63 spots containing 42 different proteins were unequivocally identified by MALDI-TOF MS coupled with database interrogation. As expected, many of them were membrane proteins. Six proteins were selected for further validation studies based on their potential functional link with malignant transformation and signal transduction. These were prohibitin (PHB), protein disulfide isomerase 3 (PDIA3), focal adhesion kinase 2 (FAK2), c-GMP dependent protein kinase 2 (KGP2), NADH-ubiquinone oxidoreductase 30 kDa subunit (NUGM) and translationally controlled tumor protein (TCTP). All these proteins were up-regulated in the membranes of H-RasV12-transformed p38a-/-cells, except for prohibitin, which was down-regulated. An excellent correlation was found between DIGE results and Western blot studies, indicating the reliability of the 2-D-DIGE analysis. The available evidence about the putative function of the identified proteins supports the emerging role of p38a as a negative regulator of tumorigenesis. Further studies are in progress to elucidate the implications of these findings in the regulation of H-Rasinduced transformation by p38a signaling.

Phosphorylation of Raf-1 serine 338-serine 339 is an essential regulatory event for Ras-dependent activation and biological signaling

Molecular and Cellular Biology, 1997

Activation of the Raf serine/threonine protein kinases is tightly regulated by multiple phosphorylation events. Phosphorylation of either tyrosine 340 or 341 in the catalytic domain of Raf-1 has been previously shown to induce the ability of the protein kinase to phosphorylate MEK. By using a combination of mitogenic and enzymatic assays, we found that phosphorylation of the adjacent residue, serine 338, and, to a lesser extent, serine 339 is essential for the biological and enzymatic activities of Raf-1. Replacement of S338 with alanine blocked the ability of prenylated Raf-CX to transform Rat-1 fibroblasts. Similarly, the loss of S338-S339 in Raf-1 prevented protein kinase activation in COS-7 cells by either oncogenic Ras[V12] or v-Src. Consistent with phosphorylation of S338-S339, acidic amino acid substitutions of these residues partially restored transforming activity to Raf-CX, as well as kinase activation of Raf-1 by Ras[V12] or v-Src. Two-dimensional phosphopeptide mapping o...

A Role for the Ral Guanine Nucleotide Dissociation Stimulator in Mediating Ras-induced Transformation

Journal of Biological Chemistry, 1996

Oncogenic Ras transforms cells through the activation of multiple downstream pathways mediated by separate effector molecules, one of which is Raf. Here we report the identification of a second ras-binding protein that can induce cellular transformation in parallel with activation of the Raf/mitogen-activated protein kinase cascade. The Ral guanine nucleotide dissociation stimulator (RalGDS) was isolated from a screen for Rasbinding proteins that specifically interact with a Ras effector-loop mutant, ras(12V,37G), that uncouples Ras from activation of Raf1. RalGDS, like ras(12V,37G), cooperates synergistically with mutationally activated Raf to induce foci of growth and morphologically transformed NIH 3T3 cells. RalGDS does not significantly enhance MAP kinase activation by activated Raf, suggesting that the cooperativity in focus formation is due to a distinct pathway acting downstream of Ras and parallel to Raf.

R-Ras can activate the phosphoinositide 3-kinase but not the MAP kinase arm of the Ras effector pathways

Chemistry & Biology, 1997

Background: The small GTPase R-Ras displays a less potent transforming activity than the closely related Ras oncogene products. Although R-Ras has been reported to interact with c-Raf1 and Ral-GDS in vitro, the pathways by which it exerts its effects on cellular proliferation are not known. Results: Both Ras and R-Ras interact with phosphoinositide (PI) 3-kinase in vitro, and induce elevation of the levels of PI 3-kinase lipid products in intact cells. Unlike Ras, R-Ras does not activate Raf or mitogen-activated protein (MAP) kinase in cells. In co-transfection assays, the serine/threonine protein kinase PKB (or Akt) is effectively stimulated by R-Ras, Ras, mutants of Ras that activate PI 3-kinase but not other effectors, and activated forms of PI 3-kinase. Ras and R-Ras stimulate PKB/Akt through a non-autocrine mechanism that involves PI 3-kinase. The constitutive activation of PI 3-kinase alone is sufficient to activate PKB/Akt, but not the MAP kinase ERK or the stress-activated protein kinase, Jun N-terminal kinase. Transformation assays in fibroblasts suggest that PKB/Akt and Raf are part of distinct oncogenic signalling pathways. Conclusion: Both the Raf-MAP kinase and PI 3-kinase-PKB/Akt pathways are activated by Ras, but only the PI 3-kinase-PKB/Akt pathway is activated by R-Ras. PI 3-kinase, and downstream targets such as PKB/Akt, are likely to be essential mediators of transformation induced by R-Ras. PI 3-kinase, as well as Raf, is thus implicated also in Ras transformation.

C-Raf-1 protein kinase is not essential for Ras transformation of mouse embryo fibroblasts

Cancer biology & therapy

Transfection of primary cells with mutated oncogenic ras plus a cooperating oncogene such as myc results in the acquisition of the transformed cell phenotype. The pathways downstream of Ras that are required for transformation are an active topic of research. The Raf-MEKK-MAP kinase pathway is triggered by activation of Ras and thought to be important in Ras transformation of rodent fibroblasts. To further explore the involvement of this pathway, fibroblasts from homozygous knock out c-Raf-1 mouse embryos (20 KO) and wild-type c-Raf-1 mouse embryos (16 WT) were transfected with H-ras and myc(v). The resulting cell line derived from the knock out cells grew slower both in tissue culture and had a longer latency period as tumors than the transformed cell line from the wild-type cells. Both cell lines were however able to form tumors in nude mice. These results suggest that c-Raf-1 is not required for Ras transformation in this system.

Kinase-deficient Pak1 mutants inhibit Ras transformation of Rat-1 fibroblasts

1997

Among the mechanisms by which the Ras oncogene induces cellular transformation, Ras activates the mitogen-activated protein kinase (MAPK or ERK) cascade and a related cascade leading to activation of Jun kinase (JNK or SAPK). JNK is additionally regulated by the Ras-related G proteins Rac and Cdc42. Ras also regulates the actin cytoskeleton through an incompletely elucidated Rac-dependent mechanism. A candidate for the physiological effector for both JNK and actin regulation by Rac and Cdc42 is the serine/threonine kinase Pak (p65 pak ). We show here that expression of a catalytically inactive mutant Pak, Pak1 R299 , inhibits Ras transformation of Rat-1 fibroblasts but not of NIH 3T3 cells. Typically, 90 to 95% fewer transformed colonies were observed in cotransfection assays with Rat-1 cells. Pak1 R299 did not inhibit transformation by the Raf oncogene, indicating that inhibition was specific for Ras. Furthermore, Rat-1 cell lines expressing Pak1 R299 were highly resistant to Ras transformation, while cells expressing wild-type Pak1 were efficiently transformed by Ras. Pak1 L83,L86,R299 , a mutant that fails to bind either Rac or Cdc42, also inhibited Ras transformation. Rac and Ras activation of JNK was inhibited by Pak1 R299 but not by Pak1 L83,L86,R299 . Ras activation of ERK was inhibited by both Pak1 R299 and Pak1 L83,L86,R299 , while neither mutant inhibited Raf activation of ERK. These results suggest that Pak1 interacts with components essential for Ras transformation and that inhibition can be uncoupled from JNK but not ERK signaling.